

ELECTENG311

Part 3

Matthew Pearce

matthew.pearce@auckland.ac.nz

405.655.1 City Campus

(Based on notes prepared by Dr Jackman F.Y. Lin (2021))

About Matthew

- PhD UoA Completed 2020, Inductive Power Transfer Magnetics for Roads
- Post Doc, Tennessee Tech University 2021-2022, Single contact CPT and Through the Soil Power Transfer
- Post Doc, UoA, 2022, Motor Drives for Superconducting Electric Motors.

Practical Considerations

Practical Considerations – Learning Objectives

By the end of this lecture students will understand

- Practical limits of a flyback converter
- Additional circuitry for more efficient and practical operation
- Using standard laboratory equipment to test for circuit failures
- Practical limitations of different types of capacitors

Practical Considerations – Revision

- So far you have learned:
 - Flyback converter topology theory and design
 - Control of flybacks
 - Open loop
 - Closed loop PI
 - Using the UC3843 controller
 - MOSFETs
 - Magnetics
 - Transformer design
 - Leakage inductance
 - Component selection
 - Isolation

- Overshoots and Ringing
 - Leakage Inductance
 - Parasitic Capacitance
 - FET Avalanche Mode
 - Snubbers
- Thermal Management
- Circuit Debugging (Test Equipment)
- Practical Capacitors

Practical impacts of FETS and Leakage Inductance

Or "Sometimes we get some components for free!"

Overshoots and Ringing – Example

- Perfect inductor (Discontinuous mode)
 - Practically impossible (k = 1)
- No overshoots great!

Overshoots and Ringing – Example

- A very good inductor (yours?) (k = 0.99)
- Uh-oh!
 - Overshoot up to 110 V
 - Excessive ringing on the switch
 - Occurs when the switch turns off

Overshoots and Ringing – Parasitic Capacitances

• MOSFETs have parasitic capacitances because of the way they are constructed:

•
$$C_{iss} = C_{gd} + C_{gs}$$

•
$$C_{oss} = C_{gd} + C_{ds}$$

•
$$C_{rss} = C_{gd}$$

- FQP13N10 has a table of typical and maximum parasitic values under certain operating conditions
- These are also why we need a high MOSFET drive current!

Dynamic	Characteristics
---------	-----------------

Ciss	Input Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		345	450	pF
Coss	Output Capacitance		12	100	130	pF
Crss	Reverse Transfer Capacitance			20	25	pF

G

Leakage Inductance and Parasitic Capacitance

- The leakage inductance (L_{lk}) and parasitic capacitance (C_{oss}) cause ringing
- Ringing occurs when the switch turns off from an on state
 - Caused by Coss of the MOSFET
 - Modelled as a lumped capacitor across drain-source for simplicity

Try: Figure 5. Capacitance Characteristics

Perform an Ltspice simulation of a flyback converter with an ideal switch (Coss = 0) and coupling factor = 0.99.

Overshoots and Ringing

- When the switch is on:
 - Leakage inductance charged to a certain energy based on the on time.

$$E = \frac{1}{2}LI^2$$

- When the switch is turned off:
 - The energy in the magnetizing inductor is dissipated in the output capacitor (not shown)
 - The output voltage reflects onto the primary side.
 - $V_{ref} = n(V_{out} + V_f)$, where $n = \frac{N_p}{N_s}$
 - V_f is the forward voltage of the output diode
 - The energy in the leakage inductor must also be dissipated somewhere
 - Through the output capacitor
 - After all the energy is dissipated:
 - Magnetizing inductance comes into play
 - Lower frequency ringing is observed

Overshoots and Ringing

• The current in an inductor cannot change instantaneously

$$v_L = L \frac{di}{dt}$$

- At the switching instant, the current in the leakage inductor is maximum
- $i_c = C \frac{dv}{dt}$

- The voltage across a capacitor cannot change instantaneously
 - At the switching instant, the voltage across the capacitor is almost 0
- When the switch turns off, the current in the system is suddenly forced into the output capacitor of the switch
 - Energy is conserved: $\frac{1}{2}LI^2 = \frac{1}{2}CV^2$
 - $V = I\sqrt{\frac{L}{c}}$, where I is the peak current at the switching moment
 - This causes a large voltage spike across Coss
 - Typically, we can approximate Vds as:

$$V_{ds} = V_{in} + V_{ref} + I_{Lp,peak} \sqrt{\frac{L_{lk}}{C_{OSS}}}$$

- Note that this equation only assumes an ideal switch with only Coss (which varies with Vds)
 - Real switches and circuit board will have other parasitics!

Overshoots and Ringing – What's going on here?

- But wait! In the previous example we had:
 - $V_{in} = 20 V$
 - D = 0.4
 - $f = 100 \, kHz$
 - $L_{lk} = 1.99 \, \mu H$
 - $C_{oss} = 100 \, pF$

•
$$V_{out} = \sqrt{\frac{R_L}{2f_s L_p}} * V_{in}D = 16 V$$

•
$$I_{Lp,peak} = \frac{V_{in}}{L_p} DT_s = 0.8 A$$

- So Vds should be $Vds = 20 + 1 * (16 + 0.7) + 0.8 \sqrt{\frac{L_{lk}}{Coss}} = 149.55 \text{ V}$
- Why does the simulation cap out at 110 V?
- This zone is called the Avalanche mode

Overshoots and Ringing – What's going on here?

- But wait! In the previous example we had:
 - $V_{in} = 20 V$
 - D = 0.4
 - $f = 100 \, kHz$
 - $L_{lk} = 1.99 \, \mu H$
 - $C_{oss} = 100 \, pF$
 - $V_{out} = \sqrt{\frac{R_L}{2f_s L_p}} * V_{in}D = 16 V$
 - $I_{Lp,peak} = \frac{V_{in}}{L_p} DT_s = 0.8 A$

- So Vds should be Vds = 20 + 1 * (16 + 0.7) + $0.8\sqrt{\frac{L_{lk}}{coss}}$ = 149.55 V
- Why does the simulation cap out at 110 V?
- This zone is called the Avalanche mode

Avalanche Mode Operation

- Avalanche mode occurs when the voltage across the MOSFET exceeds the maximum rated voltage as stated in the datasheet:
 - For the FQP13N10 the BVdss (Breakdown Vds) is 100 V
 - The FQP13N10 is rated for avalanche breakdown
 - Not all FETS are
- In avalanche mode, the FET behaves like a Zener Diode
 - Clamps the voltage at 110 V
 - Not always 10% higher than Rated BVdss
 - Check the datasheets for all your switches
- Excess energy is dissipated as heat, and can be destructive

(Wikipedia: Avalanche: Chagai)

Avalanche Mode Operation

- Avalanche constraints are in the datasheet
- On switching edge, the energy dissipated in the FET is equal to the energy stored in the leakage inductance of the transformer $E = \frac{1}{2}LI^2$
- At $I_{Lp,peak}$ = 800 mA, and a coupling factor of 0.99, the avalanche energy is approximately 0.4 μ J < 6.5 mJ
- Note that for your project your Avalanche energy will depend on:
 - Your power rating
 - Your transformer design
- Since you will be pulsing Vds frequently, use the *repetitive avalanche energy rating*
- Try: Perform an LTSpice simulation and replace the MOSFET with an ideal switch with an output Coss with k = 0.99. Confirm that the Vds spike reaches approximately what is calculated for a switch without avalanche.

E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	95	mJ
I _{AR}	Avalanche Current	(Note 1)	12.8	Α
E _{AR}	Repetitive Avalanche Energy	(Note 1)	6.5	mJ

Ringing Frequency

- We can also see that when the switch turns off there is now an LC circuit
 - Formed by the leakage inductance and the output capacitance
 - An ideal LC circuit has a ringing frequency given by:

$$f = \frac{1}{2\pi\sqrt{LC}}$$

- Where L is the leakage inductance (L_{lk}), and C is the parasitic capacitance of the entire circuit (not just Coss)
- Try:
 - Using LTspice, show that the ringing frequency relates to the leakage inductance and Coss of a switch by setting up a simulation with an ideal switch, an output Coss = 100 pF, and a coupling factor of 0.99. Use a variety of Lp values to show that the ringing frequency changes

Managing Overshoots and Ringing

- Overshoots and ringing lead to excess loss in the circuit
- EMI issues also occur
- Practical methods of managing/minimizing the overshoots and ringing include:
 - Snubbers
 - Voltage clamps
 - Active clamps
- We will only cover snubber design
- You will be expected to design your own snubbers as a minimum requirement in this course.
- You are allowed to use other overshoot and ringing management techniques
 - Provided you can prove that you have designed it properly!

Snubbers

- A well designed snubber circuit reduces the ringing of the Vds on the switching edge
- An RC circuit across the transformer will achieve this goal.
 - RC circuit gives the leakage energy in the transformer another path to flow
 - Values for R and C need to be chosen carefully!
 - Improperly designed snubbers will result in even more loss than no snubber!
- Design steps:
 - 1. Extract ringing frequency (f_r) and the leakage inductance (L_{lk}) information from simulation/measurements
 - 2. Set a resistance R which is equal to the impedance of the leakage inductance:

$$R = 2\pi f_r L_{leak}$$

3. Set impedance of C equal to this resistance

$$C = \frac{1}{2\pi f_r R}$$

Snubbers – Example

- Example:
 - Lp = $100 \mu H$
 - k = 0.99
 - FQP13N10 MOSFET
 - $R_L = 80 \Omega$
 - D = 0.4
- L_{leak} = 1.99 uH, $f_r \approx$ 11.6 MHz, (from simulation) (11.3 MHz from calculation)
- Calculate R = 145.04 Ω using simulation values
- Calculate C = 3.7 nF

.param ton=0.4e-5 RI=80 .tran 0 5m 4m

Snubbers – Effective

- Too good to be true?
 - Peak voltage is lower down from avalanche mode to 60 V peak
 - Almost no ringing
- Snubber circuit also has losses
 - If the circuit layout has different parameters then the snubber resistor will have excessive loss
 - Could end up being less efficient than a snubber-less circuit

Snubbers – Effective

- Snubber circuit also has losses
 - If the circuit layout has different parameters then the snubber resistor will have excessive loss
 - Could end up being less efficient than a snubber-less circuit

Snubbers – Power Loss (the trade-off)

- The power loss in the snubber resistor is determined by
 - If the snubber is designed to be (virtually) perfect then when the switch turns off, all of the energy in the inductor is shunted into the resistor
 - If the converter has a lot of energy in the leakage inductance then your converter efficiency will decrease
 - Need to increase R and decrease C to lower losses
 - Higher R
 - You will trade off efficiency for ringing
- Practical values for your snubber circuit will also have an impact on how well you can design the snubber itself
 - You're never getting a 145.04 Ω resistor
- This simulation is only for one operating condition, you will need to consider your worst case operating condition.

Questions:

- How far can you increase R or decrease C before the snubber loses effectiveness?
- What do you consider acceptable?
- Is the snubber realizable?

Snubbers – More complex designs

- The proposed snubber design only reduces ringing for the high frequency components
- Low frequency oscillations still occur after the energy in the leakage inductance is dissipated
 - Frequency is related to the magnetizing inductance and the snubber circuit
- Low frequency ringing can also be reduced through a more advanced snubber design
 - RCD snubbers
 - Active clamps

Thermal Management

Thermal Management – Thermal Resistance

- How hot will your FET get?
- Datasheet for the FQP13N10 has the data shown

Thermal Characteristics

Symbol	Parameter	FQP13N10	Unit
R ₀ JC	Thermal Resistance, Junction-to-Case, Max.	2.31	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	°C/W

- If no heatsink is used, then use *Junction-to-Ambient* resistance
- For every watt of power dissipated in the switch, the FET will rise 62.5 degrees above ambient (usually 25 °C)
- According to datasheet, FET has an absolute maximum operating temperature of 175 °C

Thermal Management – Heatsinking

- If the switch reaches 175°C it will fail
- You may find that you will need a heatsink for your design
- If you do, then we use the *Junction-to-Case* thermal resistance
- When using a heatsink we need to use thermal compound to ensure good contact between the FET and the Heatsink (fill in air pockets)
 - Thermal compound has its own thermal resistance
 - Typical compounds have R_{θTC}<0.25 °C/W
 - Heatsinks also have a case to ambient thermal resistance (R_{th,HS})
 - Example heatsink has R_{BHS} = 25 °C/W
- Total Rth = $R_{\theta JC} + R_{\theta TC} + R_{\theta HS}$
 - Example: Rth = 2.31 + 0.25 + 25 = 27.56 °C/W if the FET is mounted to the heatsink using a thermal compound with Rth = 0.25 °C/W.
 - Even lower if a fan is used
 - Fans add cost

Thermal Characteristics			
Symbol	Parameter	FQP13N10	Unit
R ₀ JC	Thermal Resistance, Junction-to-Case, Max.	2.31	°C/W
Rela	Thermal Resistance, Junction-to-Ambient, Max.	62.5	°C/W

Example Heatsink Parameters

I nermai Performance Natural Convection	Forced Convection		
50°C @ 2W	9.0 C/W @ 400 LFM		
50°C @ 2W	9.0 C/W @ 400 LFM		
44°C @ 2W	7.0 C/W @ 400 LFM		
44°C @ 2W	7.0 C/W @ 400 LFM		

http://www.wakefield-vette.com/Portals/0/resources/datasheets/289,290.pdf

https://sound-au.com/heatsinks.htm

Circuit debugging

Testing your circuit

- During circuit testing you will probably end up unsure if certain components still work!
- Methods to test:
 - You have access to oscilloscopes, waveform generators, and multimeters
 - You will need to be able to use both for this project
 - There are dc and ac / analogue and digital signals to measure
 - Use the right tool for the right task

https://www.hioki.com/global/products/testers/dmm-4/id_5803

Testing a Diode

- Using a multimeter to test a diode
 - Select diode test feature
- Features to test:
 - Diodes should block current flow if connected backwards
 - If a diode is working, then it should have a forward voltage drop (Vf) $Vf \approx 0.7V$
 - Check your datasheets
- Test procedure:
 - 1. Ensure your circuit is not powered
 - 2. Make sure the leads are connected properly
 - a) Quick continuity test
 - Place the red lead on the Anode and the black lead on the Cathode
 - a) Measure the forward voltage drop
 - 4. Reverse your leads (black on cathode, red on anode)
 - a) Measurement should show open circuit

Testing a FET

- So, you think your FET has failed
 - How do you test it?
- Normally when a MOSFET fails the internal silicone fuses together and it becomes short circuited
- Remember that the FQP13N10 is a MOSFET with a body diode.
- Use the diode option on the multi-meter
 - 1. Ensure your circuit is not powered
 - 2. Place the positive end on the anode
 - 3. Place the negative end on the cathode
 - a) If there is a voltage drop then the body diode is fine
 - 4. Reverse the connections
 - a) If the circuit shows an open circuit, then your MOSFET is most likely fine
 - 5. Place a dc voltage across the drain-source of the MOSFET
 - 6. Drive the MOSFET with an artificial pulse from the waveform generator

Testing a Zener Diode

- Zener diodes constrain the voltage between the anode and cathode
- Zeners have a forward voltage and a Zener breakdown voltage
- To test the forward voltage, follow the same steps as <u>Testing a Diode</u>
- To test the Zener Voltage, you need to set up (at the minimum) the circuit shown:
 - 1. Set up the resistor so that the Zener diode does not get too hot!
 - 2. Increase your dc supply voltage so that it is higher than the Zener Voltage
 - 3. Measure the voltage across your Zener diode and make sure it equals what is expected

Capacitor Selection

Capacitor types

- Previously you have learned about different types of capacitors
 - Electrolytic
 - Usually for dc links
 - High energy storage
 - Limited lifetime
 - Placement needs care to avoid operating at high temperatures
 - Film
 - Used for dc links and decoupling
 - Limited lifetime
 - Lots of different methods of construction/dielectric material
 - Ceramic
 - Used for resonant circuit and decoupling
 - Lots of different methods of construction/dielectric material
- The requirement for this project is for a compact dc-dc converter
 - Therefore, the use of electrolytic capacitors is minimized, but cannot be avoided

(Wikipedia, Capacitor: Eric Schrader)

Capacitor Types

- Different types of capacitors will have different applications
 - High frequency tuning
 - Low capacitance, low/high voltage
 - Ceramic and film
 - Dc-link capacitors
 - High capacitance, high voltage
 - Electrolytic, film, power
 - Decoupling capacitors
 - Low capacitance, low voltage
 - Ceramic and film
 - Energy storage
 - High capacitance, low voltage
 - Super-capacitors

https://product.tdk.com/en/products/selectionguide/capacitor.html

Decoupling Capacitors

- Decoupling capacitors shunt noise to ground
- Also can be thought of as a local energy store
- (don't confuse with coupling capacitors, which are for blocking DC between AC stages)
- Typically placed as close as possible to ICs to minimise the supply line inductance and series resistance
- A combination of types is often used as capacitors differ in highfrequency characteristisc
- Typically something of the order of 10-100 uF Electrolytic and several 100 nF ceramics placed close to the ICs

(Wikipedia: Decoupling Capacitor: Sven.petersen)

Capacitor Voltage Dependence

- There are lots of sub-categories for capacitors
 - Ceramic: C0G/NP0, X7R, Y5V
 - These are temperature coefficients
 - Determines how stable the capacitances are with respect to changes in temperature/voltage/frequency
 - High voltages/frequencies lead to high temperatures, so temperature coefficients are used to capture the big picture
- If capacitors are run near their maximum ratings, then the capacitance degrades
 - Mostly an issue with ceramic caps
- COG/NPO capacitors are great, but expensive.
- Information is in datasheets

https://www.tme.eu/Document/4a42202b32dab16128fe107dd69598cc/samsung-chip-cap.pdf

Capacitor Temperature Dependence

- Capacitance also changes based on temperature
 - Affects all capacitors
- C0G ceramic capacitors look great
 - Again, \$\$\$

▶ CAPACITANCE - TEMPERATURE CHARACTERISTICS

https://www.tme.eu/Document/4a42202b32dab16128fe107dd69598cc/samsung-chip-cap.pdf

Figure 9 Relative capacitance change $\Delta C/C$ vs. temperature T (typical values)

https://www.tdk-electronics.tdk.com/download/530754/480aeb04c789e45ef5bb9681513474ba/pdf-general technical information.pdf

Capacitor Frequency Dependence

THE UNIVERSITY OF AUCKLAND
TO Whate Washing a Brinds Helbaura
N E W Z E A L A N D

- Top Picture: X7R characterization sheet
- Bottom Picture: COG characterization sheet
- COG has an order of magnitude higher frequency stability than X7R
 - For these TDK capacitors
- COGs are great, but cost more

https://product.tdk.com/system/files/dam/doc/product/capacitor/ceramic/mlcc/charasheet/cnc6p1x7r2a475k250ae_210616.pdf

https://product.tdk.com/system/files/dam/doc/product/capacitor/ceramic/mlcc/charasheet/c5750c0g2j104j280kc.pdf

Capacitor Lifetime

- All capacitors have a finite lifetime
- Dependent on temperature
- If capacitors are placed near components that will get hot (i.e., a hot switch), then lifetime will decrease faster.
- Design for expected lifetime operation
- If you expect your product to last longer than the capacitor lifetime
 - Place more capacitors than required
 - Degradations will be compensated over time
 - More capacitors = less heat generations in each cap
- If the value of the capacitance is critical (i.e., high frequency tuning)
 - Consider paying more for COG grade capacitors

▶CAPACITANCE CHANGE - AGING

https://www.tme.eu/Document/4a42202b32dab16128fe107dd69598cc/samsung-chip-cap.pdf

Life time expectancy	Useful life time: $>$ 100 000 h at U _{NDC} and 70 °C FIT: $<$ 10 x 10 ⁻⁹ /h (10 per 10 ⁹ component h) at 0.5 x U _{NDC} , 40 °C

https://www.vishay.com/docs/28164/mkp1848dcl.pdf

Practical Considerations - Summary

- Covered:
 - What causes overshoots and ringing
 - Transformer design (higher k is better)
 - Parasitic capacitances
 - How to design a perfect snubber to minimize overshoot and ringing
 - How to test your silicon devices if you suspect any component failures
 - Different types of capacitors
 - How different types of capacitors degrade
- You now have all the information to complete your analogue converter design

Thanks! Questions?