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Learning outcomes

• Revise magnetic concepts and laws.

• Understand core saturation and the effect of air gaps.

• Understand and derive ideal transformer models.

• Understand the constraints in practical transformer model.
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Magnetics
Magnetic circuits



Magnetics – introduction

• Everything in electrical engineering are a combination 
of the basic elements. 

• Magnetics encompass a wide range of devices that 
create or manipulate magnetic fields.
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Resistors Capacitors Magnetics Switches

• Passive and active elements in electrical circuits

[1] https://commons.wikimedia.org/wiki/File:Bar_magnet.jpg
[2] https://www.hisour.com/electric-motor-40853/
[3] https://nz.mouser.com/new/bel-signal-transformer/signal-transformer-two-4-one-power-transformers/
[4] https://the-rsgroup.com/the-1000th-power-transformer/

• A bar magnet [1] • An electric motor [2]

• Transformers [3] and [4]

https://commons.wikimedia.org/wiki/File:Bar_magnet.jpg
https://www.hisour.com/electric-motor-40853/
https://nz.mouser.com/new/bel-signal-transformer/signal-transformer-two-4-one-power-transformers/
https://the-rsgroup.com/the-1000th-power-transformer/


Magnetics – magnetomotive force

• Magnetic fields are analogous to electric fields.

• An electric field is formed when there is a difference in 
electric potential between two points. The electric potential 
difference is called electromotive force or voltage (𝑉𝑉) .

• Magnetomotive force (𝐹𝐹𝑚𝑚) can be considered as ‘magnetic 
potential difference’ between two points.

• A magnetic field strength (𝐻𝐻) is generated when 𝐹𝐹𝑚𝑚 is 
present between two points separated by a distance (ℓ) as 
given by:

• 𝐹𝐹m = ∫𝑥𝑥1
𝑥𝑥2 𝐻𝐻 ⋅ 𝑑𝑑ℓ

• If 𝐻𝐻 is assumed to be uniform, the equation is reduced to:

• 𝐹𝐹m = 𝐻𝐻ℓ

• Similarly, the voltage in an uniform electric field (𝐸𝐸) is given 
by:

• 𝑉𝑉 = 𝐸𝐸ℓ
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Length (ℓ)

x1 x2

Magnetomotive force

Length (ℓ)

Voltage

Magnetic field (H) Electric field (E)

Fm = Hℓ V = Eℓ

x1 x2

• Magnetomotive force and voltage



Magnetics – magnetic field

• Note that B and H are referring to two different things.

• Given the same coil wound in air and a magnetic material:

• Magnetic field strength (𝐻𝐻) is dependent only on the 
magnetomotive force applied to the winding.

• Magnetic flux density (𝐵𝐵) is dependent on the 𝐻𝐻 as well as the 
permeability of the material the magnetic flux is passing through.

• Note that magnetic flux density (𝐵𝐵) is also often simply called the 
magnetic field.

• The two are related by the equation: 𝐵𝐵 = 𝜇𝜇𝐻𝐻.

• Permeability (𝜇𝜇) indicates how easily magnetic flux can pass 
through the material. 

• Magnetic materials increase 𝜇𝜇 so more 𝐵𝐵 is generated per 𝐻𝐻 within 
the coil.
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• Magnetic flux in air or in a magnetic core

Magnetic core

Air 

H = ℓ
Fm

B = µH



Magnetics – permeability

• The permeability can be broken up into two parts:

• Permeability of vacuum (𝜇𝜇0) is the ‘reference’ 
permeability for magnetic field.

• 𝜇𝜇0 = 4π × 10−7 = 1.2566370614 × 10−6 Hm-1

• If magnetic flux only travelled in vacuum, 𝐵𝐵 = 𝜇𝜇0𝐻𝐻.

• Relative permeability (𝜇𝜇r) is a ‘multiplier’ that improves 
overall permeability for the magnetic field.

• For example, air has 𝜇𝜇r of 1 while typical ferrite core has 
𝜇𝜇r of 1000 to 3000.

• So the relationship between 𝐵𝐵 and 𝐻𝐻 becomes: 

• 𝐵𝐵 = 𝜇𝜇0𝜇𝜇r𝐻𝐻
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• Magnetic flux in air or in a magnetic core

Magnetic core

Air 

H = ℓ
Fm

B = µH



Magnetics – magnetic flux

• If 𝐹𝐹m is analogous to 𝑉𝑉, magnetic flux (𝜙𝜙) is analogous 
to electric current (𝐼𝐼).

• If magnetic flux passes through a surface with an area 
of 𝐴𝐴, the magnetic flux density (𝐵𝐵) can be found given:

• 𝜙𝜙 = ∫𝑆𝑆 𝐵𝐵 ⋅ 𝑑𝑑𝑑𝑑

• If B is assumed to be uniform, the equation can be 
simplified to:

• 𝜙𝜙 = 𝐵𝐵𝐵𝐵

• Similarly, uniform current passing through a surface 
with an area of 𝐴𝐴 results in current density (𝐽𝐽).

• 𝐼𝐼 = 𝐽𝐽𝐴𝐴
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Surface area (A)

𝜙𝜙total 𝜙𝜙total
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Surface area (A)
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AJ =

• Magnetic flux and electric current



• Given that 𝐻𝐻 = 𝐵𝐵
μ

and 𝐵𝐵 = 𝜙𝜙
𝐴𝐴

,

• 𝐹𝐹m = 𝐵𝐵
μ
ℓ = ℓ

μ𝐴𝐴
𝜙𝜙

• Reluctance (𝑅𝑅m) is given by: 𝑅𝑅m = ℓ
μ𝐴𝐴

.

• ∴ 𝐹𝐹m = 𝜙𝜙𝑅𝑅m
• Similar to Ohm’s law: 𝑉𝑉 = 𝐼𝐼𝐼𝐼.

• 𝑅𝑅 = ℓ
𝜎𝜎𝐴𝐴

, 

• 𝜎𝜎 is the electrical conductivity.

Magnetics – reluctance
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Material 
permeability (µ)

Length (ℓ)

Area (A)

Reluctance (Rm)

Magnetomotive 
force (Fm)

Magnetic 
flux (𝜙𝜙)

Magnetomotive 
force (Fm)
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Magnetic 
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Magnetics – magnetic circuits and electric circuits

Magnetic quantity Electric quantity

Magnetomotive force (𝐹𝐹m) Electromotive force or voltage (𝑉𝑉)

Magnetic field strength (𝐻𝐻) Electric field strength (𝐸𝐸)

Magnetic flux (𝜙𝜙) Current (𝐼𝐼)
Magnetic flux density (𝐵𝐵) Current density (𝐽𝐽)
Reluctance (𝑅𝑅m) Resistance (𝑅𝑅)

Permeability (μ) Conductivity (𝜎𝜎)
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• Analogous terms between magnetic and electric circuits

• Many of the terms between magnetic circuits and 
electrical circuits are quite similar with each other.

• Comparison of electric and magnetic circuits

Reluctance (Rm)

Magnetomotive 
force (Fm)

Magnetic 
flux (𝜙𝜙)

Fm
𝜙𝜙Rm = = ℓ

µA

Fm1=ni(t) Rm

𝜙𝜙(t)

Fm2

v1(t) R

i(t)

v2

• Reluctance in magnetic circuits



Magnetic 
flux (𝜙𝜙)

Voltage (v)

Magnetic 
flux (𝜙𝜙)

Induced 
current (I)

Induced 
magnetic 
flux (𝜙𝜙')

Induced 
voltage (v')

Current i(t)

H

Magnetic path 
length (ℓm)

Magnetics – laws  

• Faraday’s Law: 𝑣𝑣(𝑡𝑡) = 𝑑𝑑𝜙𝜙(𝑡𝑡)
𝑑𝑑𝑑𝑑

• If 𝐵𝐵 is assumed to be uniform, 𝑣𝑣(𝑡𝑡) = 𝐴𝐴 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

.

• Voltage induced in a winding is dependent on the 
change of magnetic field passing through the cross-
sectional area of the loop.

• Lenz’s Law: 𝑣𝑣𝑣 𝑡𝑡 = −𝐴𝐴 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

• The induced voltage has a polarity that counteracts the 
magnetic field into the loop.

• Ampere’s Law: ∫𝑆𝑆 𝐻𝐻 ⋅ 𝑑𝑑𝑑 = total current enclosed in the 
path.

• Given uniform magnetic field, 𝐹𝐹m 𝑡𝑡 = 𝐻𝐻 𝑡𝑡 ℓm = 𝑖𝑖 𝑡𝑡 .

• Net magnetomotive force around a closed loop is equal 
to the total current passing through the path.
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• Magnetic flux into open and closed loops

• A current inducing magnetic field within a magnetic material



v (t)

 

  
 

Current 
i(t)

𝜙𝜙

N turns
Core 

permeability (µr)

Area (A)

 

Magnetics – inductance
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• Multiple turns of wire forming an inductor around the magnetic core 

• From Faraday’s Law, the voltage in each turn of wire is:

• 𝑣𝑣turn (𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

• The same flux passes through each turn of wire so total 
voltage across the winding is given by: 

• 𝑣𝑣 𝑡𝑡 = 𝑁𝑁𝑣𝑣turn 𝑡𝑡 = 𝑁𝑁 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

• The average magnetic field within the winding is:

• 𝑣𝑣(𝑡𝑡) = 𝑁𝑁𝑁𝑁 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

• Given that 𝐵𝐵 = 𝜇𝜇0𝜇𝜇r𝐻𝐻,

• 𝑣𝑣(𝑡𝑡) = 𝜇𝜇0𝜇𝜇r𝑁𝑁𝑁𝑁
𝑑𝑑𝐻𝐻(𝑡𝑡)
𝑑𝑑𝑑𝑑



Magnetics – inductance

• Ampere’s Law: 𝐻𝐻 𝑡𝑡 ℓm = 𝑖𝑖 𝑡𝑡

• The number of turns multiply the current in the 
enclosed area.

• ∴ 𝐻𝐻 𝑡𝑡 ℓm = 𝑁𝑁𝑖𝑖 𝑡𝑡

• 𝐻𝐻 𝑡𝑡 = 𝑁𝑁𝑖𝑖 𝑡𝑡
ℓm

• Since 𝑣𝑣(𝑡𝑡) = 𝜇𝜇0𝜇𝜇r𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

,

• 𝑣𝑣 𝑡𝑡 = 𝜇𝜇0𝜇𝜇r𝑁𝑁2𝐴𝐴
ℓm

𝑑𝑑𝑖𝑖 𝑡𝑡
𝑑𝑑𝑑𝑑

• Inductance (𝐿𝐿) is defined as 𝐿𝐿 = 𝜇𝜇0𝜇𝜇r𝑁𝑁2𝐴𝐴
ℓm

so:

• 𝑣𝑣 𝑡𝑡 = 𝐿𝐿 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

• Inductance resists the change in the current inside of a 
coil.
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• Ampere’s Law for multiple turn windings.
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Magnetics – core saturation

• Magnetic materials cannot pass infinite amount of 
magnetic field.

• The B-H curve describes the amount of 𝐵𝐵 within the core 
for a given amount of 𝐻𝐻.

• At saturation, 𝐵𝐵 = 𝐵𝐵𝑆𝑆𝑆𝑆𝑆𝑆 ∴
𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

= 0

• This sets the Faraday’s Law to be: 

• 𝑣𝑣 𝑡𝑡 = 𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

= 0

• ∴ 𝑣𝑣 𝑡𝑡 = 𝐿𝐿 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

= 0

• As no amount of voltage is induced between the terminals, 
the inductor behaves like a short circuit under core 
saturation.

• This shows that the behaviour of the inductor only holds 
when the core is not saturated.
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• Saturation conditions on a B-H curve

• An example inductor wound around a magnetic core

H

B

B =

BSAT      

-BSAT      

µH       

when H ≥ BSAT/µ

when |H| < BSAT/µ

when H ≤ -BSAT/µ

BSAT      

µH

-BSAT      

v (t)

Current 
i(t)

𝜙𝜙

n turns Core 
permeability (µr)

Area (A)

𝜙𝜙
AB =



v (t)

𝜙𝜙1

𝜙𝜙2

𝜙𝜙3

𝜙𝜙1

𝜙𝜙2

𝜙𝜙3

𝜙𝜙1+𝜙𝜙2=𝜙𝜙3

i (t)

N
Air gap

𝜙𝜙 Area (A)

Magnetic path 
length (ℓm)

Core 
permeability (µr)

Fm=Ni(t)

Rcore

Rair𝜙𝜙(t) Fair

Fcore

Magnetics – magnetic circuits
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• All magnetic flux going into the node equal to the 
magnetic flux going out of the node (like KCL):

• 𝜙𝜙1 + 𝜙𝜙2 = 𝜙𝜙3
• Similarly, sum of the magnetomotive force in a 

loop is equal to zero (like KVL):

• 𝐹𝐹m = 𝐹𝐹core + 𝐹𝐹air
• Given that the core has an air gap, the reluctances 

are:

• 𝑅𝑅core = ℓcore
𝜇𝜇0𝜇𝜇r𝐴𝐴

and 𝑅𝑅air = ℓair
𝜇𝜇0𝐴𝐴

• 𝑅𝑅e = 𝑅𝑅core + 𝑅𝑅air = ℓcore
𝜇𝜇0𝜇𝜇r𝐴𝐴

+ ℓair
𝜇𝜇0𝐴𝐴

= ℓcore
𝜇𝜇0𝜇𝜇r𝐴𝐴

+ ℓair𝜇𝜇r
𝜇𝜇0𝜇𝜇r𝐴𝐴

• = ℓcore+ℓair𝜇𝜇r
𝜇𝜇0𝜇𝜇r𝐴𝐴

=
ℓcore
𝜇𝜇r

+ℓair

𝜇𝜇0𝐴𝐴

• Here, 𝑅𝑅e is the effective reluctance of the circuit.

• Node analysis for magnetic circuit

• Magnetic circuit of an inductor wound on a core



Magnetics – magnetic circuits

• From Ampere’s Law:

• 𝐹𝐹m = 𝑁𝑁𝑁𝑁 = 𝜙𝜙 𝑅𝑅core + 𝑅𝑅air = 𝜙𝜙𝑅𝑅e

• ∴ 𝜙𝜙 = 𝑁𝑁𝑁𝑁
𝑅𝑅e

• A higher reluctance decreases the magnetic flux 
flowing in the magnetic circuit.

• Since 𝑅𝑅e = ℓ
𝜇𝜇0𝜇𝜇e𝐴𝐴

and 𝐿𝐿 = 𝜇𝜇0𝜇𝜇e𝑁𝑁2𝐴𝐴
ℓm

,

• If μe is reduced due to higher 𝑅𝑅e, the inductance 
of the winding decreases.
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v (t)

𝜙𝜙1

𝜙𝜙2

𝜙𝜙3

𝜙𝜙1

𝜙𝜙2

𝜙𝜙3

𝜙𝜙1+𝜙𝜙2=𝜙𝜙3

i (t)

N
Air gap

𝜙𝜙 Area (A)

Magnetic path 
length (ℓm)

Core 
permeability (µr)

Fm=Ni(t)

Rcore

Rair𝜙𝜙(t) Fair

Fcore

• Node analysis for magnetic circuit

• Magnetic circuit of an inductor wound on a core



Magnetics – gapped core

• What is the inductance of a winding around a gapped core?

• 𝑅𝑅core = ℓcore
μ0μr𝐴𝐴

• 𝑅𝑅air = ℓair
μ0𝐴𝐴

• 𝑅𝑅e =
ℓcore
𝜇𝜇r

+ℓair

𝜇𝜇0𝐴𝐴

• 𝐿𝐿 = 𝜇𝜇0𝜇𝜇e𝑁𝑁2𝐴𝐴
ℓm

= 𝑁𝑁2

𝑅𝑅e

• What is the effective permeability (𝜇𝜇e) of the gapped core?

• 𝜇𝜇e = ℓcore+ℓair
𝜇𝜇0𝑅𝑅e𝐴𝐴
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• Example inductor wound on a gapped core

i  = 100mA

N = 3

ℓair = 2mm

𝜙𝜙 A = 400mm2

ℓcore = 100mm

µr = 2000

      

      

    

       

          



Magnetics – gapped core

• What is the inductance of a winding around a gapped core?

• 𝑅𝑅core = ℓ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
μ0μr𝐴𝐴

= 0.1
4π×10−7×2000×0.0004

= 99472 H-1

• 𝑅𝑅air = ℓ𝑎𝑎𝑎𝑎𝑎𝑎
μ0𝐴𝐴

= 0.002
4π×10−7×0.0004

= 3978874 H-1

• 𝐿𝐿 = 𝜇𝜇0𝜇𝜇e𝑁𝑁2𝐴𝐴
ℓm

= 𝑁𝑁2

𝑅𝑅e
= 32

99472+3978874
= 0.00000221 = 2.21 μH

• What is the effective permeability (𝜇𝜇e) of the gapped core?

• 𝜇𝜇e = ℓ
𝜇𝜇0𝑅𝑅e𝐴𝐴

= 0.102
4π×10−7×4078346×0.0004

= 49.8
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• Example inductor wound on a gapped core

i  = 100mA

N = 3

ℓair = 2mm

𝜙𝜙 A = 400mm2

ℓcore = 100mm

µr = 2000

      

      

    

       

          



Magnetics – gapped core

• What is the saturation current (𝐼𝐼SAT) if 𝐵𝐵SAT = 400 mT?

• 𝐻𝐻ℓm = 𝑁𝑁𝑁𝑁

• 𝐵𝐵 = 𝜇𝜇0𝜇𝜇r𝐻𝐻

• 𝐼𝐼 = 𝐻𝐻ℓm
𝑁𝑁

= 𝐵𝐵ℓm
𝑁𝑁𝜇𝜇0𝜇𝜇r

• Effective reluctance: 𝑅𝑅e = ℓ
𝜇𝜇e𝐴𝐴

,

• 𝐼𝐼 = 𝐻𝐻ℓm
𝑁𝑁

= 𝐵𝐵ℓm
𝑁𝑁𝜇𝜇0𝜇𝜇e

= 𝐵𝐵𝐴𝐴
𝑁𝑁
𝑅𝑅e
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• Example inductor wound on a gapped core

• B-H curve for inductor wound on a gapped core

i  = 100mA

N = 3

ℓair = 2mm

𝜙𝜙 A = 400mm2

ℓcore = 100mm

µr = 2000

BSATA      

-BSAT A     

Rcore+ Rair   
1

𝜙𝜙 = BA     

Hℓ = ni    nIsat    



Magnetics – gapped core

• What is the saturation current (𝐼𝐼SAT) if 𝐵𝐵SAT = 400 mT?

• 𝐻𝐻ℓm = 𝑁𝑁𝑁𝑁

• 𝐵𝐵 = 𝜇𝜇0𝜇𝜇r𝐻𝐻

• 𝐼𝐼 = 𝐻𝐻ℓm
𝑁𝑁

= 𝐵𝐵ℓm
𝑁𝑁𝜇𝜇0𝜇𝜇r

• Effective reluctance: 𝑅𝑅e = ℓ
𝜇𝜇e𝐴𝐴

,

• 𝐼𝐼 = 𝐻𝐻ℓm
𝑁𝑁

= 𝐵𝐵ℓm
𝑁𝑁𝜇𝜇0𝜇𝜇e

= 𝐵𝐵𝐴𝐴
𝑁𝑁
𝑅𝑅e

• 𝐼𝐼sat = 𝐵𝐵SAT𝐴𝐴
𝑁𝑁

𝑅𝑅e = 0.4×0.0004
3

4078346 = 218 A
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• Example inductor wound on a gapped core

• B-H curve for inductor wound on a gapped core

i  = 100mA

N = 3

ℓair = 2mm

𝜙𝜙 A = 400mm2

ℓcore = 100mm

µr = 2000

BSATA      

-BSAT A     

Rcore+ Rair   
1

𝜙𝜙 = BA     

Hℓ = ni    nIsat    



i  = 100mA

N = 3

𝜙𝜙 A = 400mm2

ℓcore = 100mm

µr = 2000

BSATA      

-BSAT A     

Rcore+ Rair   
1

𝜙𝜙 = BA     

Hℓ = NI    NIsat1    NIsat2    

Rcore     
1

Magnetics –core without air gap

• What is the inductance if the core had no air gap?

• 𝑅𝑅core = ℓ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
μ0μr𝐴𝐴

= 0.102
4π×10−7×2000×0.0004

= 101461 H-1 = 1 × 105 H-1

• 𝐿𝐿 = 32

101461
= 88.70 μH

• Using the same conditions as before, if 𝐵𝐵SAT = 400 mT,

• 𝑖𝑖sat = 𝐵𝐵SAT𝐴𝐴
𝑁𝑁

𝑅𝑅core = 0.4×0.0004
3

× 101461 = 5.41 A

• Remember that 2mm air gap created reluctance of about 4 × 106 H-1.

• A small air gap can form a large reluctance in the magnetic flux path.

• The high inductance is an indicator of the winding inducing a large 
magnetic flux per input current.

• However, the core reaches 𝐵𝐵SAT quickly if too much magnetic flux is 
generated.

• The air gap in the cores increase the effective reluctance to push the 
saturation point further away.

22

• Example inductor wound on a core without an air gap

• B-H curves for inductor wound on a different cores



Magnetics – summary

• Magnetic circuits are analogous to electric circuits

• Faraday’s Law: 𝑣𝑣(𝑡𝑡) = 𝑑𝑑𝜙𝜙(𝑡𝑡)
𝑑𝑑𝑑𝑑

• Lenz’s Law: 𝑣𝑣𝑣 𝑡𝑡 = −𝐴𝐴 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

• Ampere’s Law: ∫𝑆𝑆 𝐻𝐻 ⋅ 𝑑𝑑𝑑

• Magnetic circuits can be formed using 𝐹𝐹m, 𝜙𝜙 and 𝑅𝑅m.

• Magnetic materials saturate and air gaps improve current 
carrying capacity by moving the saturation point.
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Magnetic quantity Electric quantity

Magnetomotive force (𝐹𝐹m) Electromotive force or voltage (𝑉𝑉)

Magnetic field strength (𝐻𝐻) Electric field strength (𝐸𝐸)

Magnetic flux (𝜙𝜙) Current (𝐼𝐼)
Magnetic flux density (𝐵𝐵) Current density (𝐽𝐽)
Reluctance (𝑅𝑅m) Resistance (𝑅𝑅)

Permeability (μ) Conductivity (𝜎𝜎)

v (t)

i (t)

n
Air gap

𝜙𝜙 Area (A)

Magnetic path 
length (ℓm)

Core 
permeability (µr)

Fm=ni(t)

Rcore

Rair𝜙𝜙(t) Fair

Fcore

• Magnetic circuit of an inductor wound on a core 
with an air gap
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Magnetics – transformer

• Transformers are used in a wide range of applications 
to step the voltages up and down as well as for isolation 
purposes. 

• A transformer transfers energy using magnetic flux 
without any conductive connection.

• According to Ampere’s Law, electric current (𝑖𝑖p) 
generates a magnetic field strength of 𝐻𝐻.

• Ampere’s Law: 𝐻𝐻 𝑡𝑡 = 𝑁𝑁𝑁𝑁 𝑡𝑡
ℓm

• Within the core, magnetic field given by: 𝐵𝐵 = 𝜇𝜇0𝜇𝜇r𝐻𝐻

• According to Faraday’s Law, an electromotive force is 
induced in the secondary coil.

• Faraday’s Law: 𝑣𝑣 𝑡𝑡 = 𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑁𝑁 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

• Since only changes in magnetic flux induce voltage in 
the secondary, DC input does not induce any output.
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• Current into the primary coil inducing voltage in the secondary coil

• Transformers [3] and [4]

[3] https://nz.mouser.com/new/bel-signal-transformer/signal-transformer-two-4-one-power-transformers/
[4] https://the-rsgroup.com/the-1000th-power-transformer/
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https://nz.mouser.com/new/bel-signal-transformer/signal-transformer-two-4-one-power-transformers/
https://the-rsgroup.com/the-1000th-power-transformer/
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Magnetics – ideal transformer

• An ideal transformer has:
• No losses in the core and the winding
• Infinite relative permeability in the core (μr = ∞)
• No leakage magnetic flux (𝜙𝜙Lp and 𝜙𝜙Ls = 0)

• Ideally, all magnetic flux generated by one coil passes 
through the other coil in a transformer.

• Leakage magnetic flux are magnetic flux generated by 
the energised coil that does not pass through the other 
coil.

• 𝑁𝑁p and 𝑁𝑁s refer to the number of turns in the primary 
coil and the secondary coil respectively.

• The magnetic circuit for a transformer gives:

• 𝑅𝑅core = ℓ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
μ0μr𝐴𝐴

• 𝐹𝐹core = 𝑁𝑁p𝑖𝑖p + 𝑁𝑁s𝑖𝑖s
• 𝜙𝜙𝑅𝑅core = 𝑁𝑁p𝑖𝑖p + 𝑁𝑁s𝑖𝑖s
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• An example ideal transformer

• Magnetic circuit for an ideal transformer



Magnetics – ideal transformer

• According to the magnetic circuit: 

• 𝐹𝐹core = 𝜙𝜙𝑅𝑅core
• In an ideal transformer, the reluctance of the core 

should be zero (𝑅𝑅core = 0) since μr = ∞.

• ∴ 𝐹𝐹core = 0

• Then the magnetic circuit becomes:

• 0 = 𝑁𝑁p𝑖𝑖p + 𝑁𝑁s𝑖𝑖s
• Since Faraday’s Law states that:

• 𝑣𝑣p = 𝑁𝑁p
𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

• 𝑣𝑣s = 𝑁𝑁s
𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

• Equate the two equations above by 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

to give:

• 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑣𝑣p
𝑁𝑁p

= 𝑣𝑣s
𝑁𝑁s
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• An example ideal transformer

• Magnetic circuit for an ideal transformer



Magnetics – ideal transformer

• The previous equation can be modified to give:

• 𝑣𝑣p
𝑣𝑣s

= 𝑁𝑁p
𝑁𝑁s

• Turns ratio of the transformer is defined as 𝑁𝑁p
𝑁𝑁s

.

• By modifying the turns ratio of the transformer, the secondary 
voltage can be stepped up or down.

• If the turns ratio is changed to modify the voltage, the current 
has to change accordingly.

• Given that an ideal transformer does not store any energy:

• 𝑣𝑣p𝑖𝑖p + 𝑣𝑣s𝑖𝑖s = 0

• 𝑣𝑣p𝑖𝑖p = −𝑣𝑣s𝑖𝑖s

• Divide the equation using the previous equation 𝑣𝑣p
𝑁𝑁p

= 𝑣𝑣s
𝑁𝑁s

:

• 𝑖𝑖p
𝑁𝑁p

= − 𝑖𝑖s
𝑁𝑁s

• 𝑖𝑖s
𝑖𝑖p

= −𝑁𝑁p
𝑁𝑁s
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Npip

Rcore

𝜙𝜙

Nsis

Fcore
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𝑣𝑣p
𝑣𝑣s

=
𝑁𝑁p
𝑁𝑁s

𝑖𝑖s
𝑖𝑖p

= −
𝑁𝑁p
𝑁𝑁s



Magnetics – dot notation

• Voltage going into the dot = voltage going out of the dot
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Magnetics – coupling factor

• 𝑘𝑘 is the coupling factor between the primary and 
secondary coils.

• 𝑘𝑘 is defined to be 0 ≤ 𝑘𝑘 ≤ 1 and indicates the proportion 
of magnetic flux generated by the primary that passes 
through the secondary.

• In this case of an ideal transformer, all of the magnetic 
flux generated from the energised coil passes through 
the other coil (𝑘𝑘 = 1).
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k =1 k ≠1

• Examples of high and low coupling factor

• An example ideal transformer

𝜙𝜙
ip

Np Ns

is

vp vs



𝜙𝜙
ip

Np Ns

is

vp vs𝜙𝜙Lp 𝜙𝜙Ls

ip

vp

Tx is

Np Ns vsLm

Lℓp Lℓs

Magnetics – practical transformer

• In real life, a practical transformer has
• Losses in the coils and the core
• Finite relative permeability (μr) in the core
• Leakage magnetic flux (𝜙𝜙Lp and 𝜙𝜙Ls) ≠ 0
• Coupling factor (𝑘𝑘) ≠ 1.

• Infinite relative permeability does not exist in real life 
so some of the magnetic flux generated by the 
energised coil ‘leaks out’.

• This leads the magnetic flux to be divided into two 
parts:

• Magnetising magnetic flux (mutual flux) (𝜙𝜙m) passes 
through the core and is subject to saturation and core 
losses.

• Leakage magnetic flux (𝜙𝜙Lp and 𝜙𝜙Ls) is generated by 
the energised coil, but does not reach the other coil.

32

• An example transformer

• Ideal transformer in circuit form with practical components



Magnetics – practical transformer

• If the magnetising inductance and leakage inductance 
could be separated out physically, they would be 
separate inductors wound in a magnetic core and air 
cores.

• Magnetising inductance (𝐿𝐿m) is due to magnetising 
magnetic flux (𝜙𝜙m).

• Leakage inductances (𝐿𝐿ℓp and 𝐿𝐿ℓs) is due to the leakage 
magnetic flux (𝜙𝜙Lp and 𝜙𝜙Ls).

• The leakage inductance adds to the total inductance, 
but does not help with transferring energy.

• In a practical transformer where (𝑘𝑘) ≠ 1,

• 𝐿𝐿mp = 𝑘𝑘𝐿𝐿p and 𝐿𝐿ms = 𝑘𝑘𝐿𝐿𝑠𝑠
• 𝐿𝐿ℓp = (1 − 𝑘𝑘)𝐿𝐿p and 𝐿𝐿ℓs = (1 − 𝑘𝑘)𝐿𝐿s
• For a flyback converter, leakage inductances create 

issues such as ringing in the switches so should be 
minimised.
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• Division of leakage and magnetising inductances in 
terms of coupling factor

• Representation of separate magnetizing inductance and 
leakage inductances
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Magnetics – T-model

• To simplify the measurement of the transformer in 
real life, the leakage inductance in the secondary can 
be reflected on to the primary.

• The impedance transformation from secondary to 
primary is:

• 𝐿𝐿ℓs′ = 𝑁𝑁p
𝑁𝑁s

2
𝐿𝐿ℓs = 𝑁𝑁p

𝑁𝑁s

2
1 − 𝑘𝑘 𝐿𝐿s

• Given that 𝐿𝐿p
𝐿𝐿𝑠𝑠

= 𝑁𝑁p
𝑁𝑁𝑠𝑠

,  𝐿𝐿s = 𝐿𝐿p
𝑁𝑁s
𝑁𝑁p

2

• 𝐿𝐿ℓs′ = 𝑁𝑁p
𝑁𝑁s

2
1 − 𝑘𝑘 𝐿𝐿s = 𝑁𝑁p

𝑁𝑁s

2
1 − 𝑘𝑘 𝐿𝐿p

𝑁𝑁s
𝑁𝑁p

2

• ∴ 𝐿𝐿ℓs′ = 1 − 𝑘𝑘 𝐿𝐿p
• This is called the ‘T-model’ of a transformer.
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Magnetics – measurement

• Using an LCR metre, the inductance of the transformer 
can be measured.

• Open-circuit the secondary and measure the 
inductance as: 𝐿𝐿ℓp + 𝐿𝐿m = (1 − 𝑘𝑘)𝐿𝐿p+𝑘𝑘𝐿𝐿p = 𝐿𝐿p

• Short-circuit the secondary and measure the 
inductance as: 𝐿𝐿sc

• Coupling factor is given by: 𝐿𝐿𝑝𝑝−𝐿𝐿sc
𝐿𝐿𝑝𝑝

= 𝑘𝑘

• Using the turns ratio, the self-inductance of the 
secondary winding can be determined:

• 𝐿𝐿s = 𝑁𝑁p
𝑁𝑁s

2
𝐿𝐿p

• If turns ratio is unknown, measuring the inductance in 
the secondary with the primary open-circuited will also 
measure the secondary self-inductance.
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Transformers – summary

• In real life, a practical transformer has
• Losses in the coils and the core
• Finite relative permeability (μr) in the core
• Leakage magnetic flux (𝜙𝜙Lp and 𝜙𝜙Ls) ≠ 0
• Coupling factor (𝑘𝑘) ≠ 1.

• Turns ratio of the transformer is defined as 𝑁𝑁p
𝑁𝑁s

.

• Self-inductance is split into magnetising inductance
and leakage inductance.

• Coupling factor is a ratio measuring how much 
magnetic flux generated from one coil is passing 
through another coil.

• Dot notation: 
VOLTAGE INTO THE DOT -> VOLTAGE OUT OF THE 
DOT

• Use the LCR meter in the lab to find the transformer 
parameters.
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Appendix



Derivation of μ0

• Two conductors are spaced 1 metre apart from each other. The 
conductors have 1 A of current flowing in opposing directions.

• Then the magnetic field strength due to conductor A at a distance 
of 1 metre is:

• 𝐻𝐻 = 𝐼𝐼
ℓm

= 1
2𝜋𝜋

Am-1

• Here, ℓm is the closed circular path around the conductor.

• Force exerted on a conductor one metre away per ampere is 
defined as 2 × 10−7 Nm-1.

• Assuming the conductors have the same length, the magnetic 
field can be found as:

• 𝐵𝐵 = 𝐹𝐹
𝐼𝐼

= 2×10−7

1
T

• Then 𝜇𝜇0 = 𝐵𝐵
𝐻𝐻

= 2 × 10−7 × 2𝜋𝜋 = 4𝜋𝜋 × 10−7 Hm-1
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• Two parallel conductors with currents 
flowing in opposing directions.

1 metre

A B

ℓm



Relationship between mutual inductance and magnetising inductance

• Inductance (𝐿𝐿) is defined as 𝐿𝐿 = 𝜇𝜇0𝜇𝜇r𝑛𝑛2𝐴𝐴
ℓm

so:

• 𝐿𝐿p
𝐿𝐿𝑠𝑠

=
𝜇𝜇0𝜇𝜇r𝑁𝑁p

2𝐴𝐴
ℓm

𝜇𝜇0𝜇𝜇r𝑁𝑁s
2𝐴𝐴

ℓm

= 𝑁𝑁p
𝑁𝑁𝑠𝑠

2

• ∴ 𝐿𝐿p
𝐿𝐿𝑠𝑠

= 𝑁𝑁p
𝑁𝑁𝑠𝑠

• Mutual inductance is defined as: 𝑀𝑀 = 𝑘𝑘 𝐿𝐿p𝐿𝐿s

• 𝑀𝑀 1
𝐿𝐿p

= 𝑘𝑘 𝐿𝐿p𝐿𝐿s
1
𝐿𝐿p

• 𝑀𝑀 1
𝐿𝐿p

= 𝑘𝑘 𝐿𝐿s
𝐿𝐿p

= 𝑘𝑘 𝑁𝑁s
𝑁𝑁𝑝𝑝

• 𝑀𝑀 = 𝑘𝑘𝐿𝐿p
𝑁𝑁s
𝑁𝑁p

• Since 𝐿𝐿mp = 𝑘𝑘𝐿𝐿p

• 𝑀𝑀 = 𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp

• ∴ 𝐿𝐿mp= 𝑁𝑁p
𝑁𝑁𝑠𝑠
𝑀𝑀

• 𝐿𝐿m𝑠𝑠 is 𝐿𝐿mp reflected on to the secondary so multiplied by 𝑁𝑁𝑠𝑠
𝑁𝑁𝑝𝑝

2

• 𝐿𝐿ms = 𝑁𝑁s
𝑁𝑁p

2 𝑁𝑁p
𝑁𝑁𝑠𝑠
𝑀𝑀 = 𝑁𝑁s

𝑁𝑁p
𝑀𝑀
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Magnetics – ideal transformer

• The ideal transformer in the circuit can be further broken 
down two electrically separated circuits.

• Previously Faraday’s Law was derived to find:

• 𝑣𝑣 𝑡𝑡 = 𝐿𝐿 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑑𝑑

• In frequency domain, this is re-written as: 𝑣𝑣 = 𝑗𝑗𝜔𝜔𝜔𝜔𝜔𝜔

• 𝜔𝜔 is the angular frequency given by 𝜔𝜔 = 2𝜋𝜋𝜋𝜋. 

• Here, 𝑓𝑓 is the frequency of the input waveform.

• 𝜔𝜔𝜔𝜔 gives the reactance of the inductor (𝑋𝑋L).

• The two electrically separated coils are magnetically 
connected by the mutual inductance (𝑀𝑀).

• Mutual inductance can be used to find the voltage induced 
from one circuit to another as:

• 𝑣𝑣 = 𝑗𝑗𝜔𝜔𝑀𝑀𝑖𝑖.
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• Ideal transformer in circuit broken down into 
inductance and induced voltages



ip

vp

is

Lp Ls

vs

M

jωMis jωMip

  

Magnetics – ideal transformer

• Using the derivations of Faraday’s Law from before, an ideal 
transformer can be described using the following equations:

• 𝑣𝑣p = 𝑗𝑗𝜔𝜔𝐿𝐿p𝑖𝑖p + 𝑗𝑗𝜔𝜔𝑀𝑀𝑖𝑖s
• 𝑣𝑣s = 𝑗𝑗𝜔𝜔𝑀𝑀𝑖𝑖p + 𝑗𝑗𝜔𝜔𝐿𝐿s𝑖𝑖s
• 𝐿𝐿p is the self-inductance of the primary coil.

• 𝐿𝐿s is the self-inductance of the secondary coil.

• This can be re-written in the matrix form as:

•
𝑣𝑣p
𝑣𝑣s =

𝑗𝑗𝜔𝜔𝐿𝐿p 𝑗𝑗𝜔𝜔𝜔𝜔
𝑗𝑗𝜔𝜔𝜔𝜔 𝑗𝑗𝜔𝜔𝐿𝐿s

𝑖𝑖p
𝑖𝑖s

= 𝑗𝑗𝜔𝜔
𝐿𝐿p 𝑀𝑀
𝑀𝑀 𝐿𝐿s

𝑖𝑖p
𝑖𝑖s
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• Ideal transformer in circuit broken down into 
inductance and induced voltages
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Magnetics – practical transformer

• In real life, a practical transformer has
• Losses in the coils and the core
• Finite relative permeability (μr) in the core
• Leakage magnetic flux (𝜙𝜙Lp and 𝜙𝜙Ls) ≠ 0
• Coupling factor (𝑘𝑘) ≠ 1.

• Infinite relative permeability does not exist in real life 
so some of the magnetic flux generated by the 
energised coil ‘leaks out’.

• This leads the magnetic flux to be divided into two 
parts:

• Magnetising magnetic flux (𝜙𝜙m) passes through the 
core and is subject to saturation and core losses.

• Leakage magnetic flux (𝜙𝜙Lp and 𝜙𝜙Ls) is generated by 
the energised coil, but does not reach the other coil.
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• An example transformer

• Ideal transformer in circuit form with practical components



Magnetics – practical transformer

• If the magnetising inductance and leakage inductance 
could be separated out physically, they would be 
separate inductors wound in a magnetic core and air 
cores.

• Magnetising inductance (𝐿𝐿m) is due to magnetising 
magnetic flux (𝜙𝜙m).

• Leakage inductances (𝐿𝐿ℓp and 𝐿𝐿ℓs) is due to the leakage 
magnetic flux (𝜙𝜙Lp and 𝜙𝜙Ls).

• The leakage inductance adds to the total inductance, but 
does not help with transferring energy.

• In a practical transformer where (𝑘𝑘) ≠ 1,

• 𝐿𝐿mp = 𝑘𝑘𝐿𝐿p and 𝐿𝐿ms = 𝑘𝑘𝐿𝐿𝑠𝑠
• 𝐿𝐿ℓp = (1 − 𝑘𝑘)𝐿𝐿p and 𝐿𝐿ℓs = (1 − 𝑘𝑘)𝐿𝐿s
• For a flyback converter, leakage inductances create 

issues such as ringing in the switches so should be 
minimised*.
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• Division of leakage and magnetising inductances in 
terms of coupling factor

• Representation of separate magnetizing inductance and 
leakage inductances
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Magnetics – practical transformer

• The previous matrix with ideal transformer:

•
𝑣𝑣p
𝑣𝑣s = 𝑗𝑗𝜔𝜔

𝐿𝐿p 𝑀𝑀
𝑀𝑀 𝐿𝐿s

𝑖𝑖p
𝑖𝑖s

• Substituting: 𝐿𝐿p = 𝑗𝑗𝑗𝑗𝐿𝐿ℓp + 𝑗𝑗𝑗𝑗𝐿𝐿mp and 𝐿𝐿s = 𝑗𝑗𝑗𝑗𝐿𝐿ℓs + 𝑗𝑗𝑗𝑗𝐿𝐿ms,

•
𝑣𝑣p
𝑣𝑣s = 𝑗𝑗𝜔𝜔

𝐿𝐿ℓp + 𝐿𝐿mp 𝑀𝑀
𝑀𝑀 𝐿𝐿ℓs + 𝐿𝐿ms

𝑖𝑖p
𝑖𝑖s

• Mutual inductance and magnetising inductance from the 
perspective of the primary are related as:

• 𝑀𝑀 = 𝑁𝑁s
𝑁𝑁p
𝐿𝐿mp

• Note that from the perspective of the secondary: 

• 𝑀𝑀 = 𝑁𝑁p
𝑁𝑁𝑠𝑠

𝑁𝑁s
𝑁𝑁p

2
𝐿𝐿mp = 𝑁𝑁s

𝑁𝑁p
𝐿𝐿ms

• So the matrix can be updated:

•
𝑣𝑣p
𝑣𝑣s = 𝑗𝑗𝜔𝜔

𝐿𝐿ℓp + 𝐿𝐿mp
𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp

𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp 𝐿𝐿ℓs + 𝐿𝐿ms

𝑖𝑖p
𝑖𝑖s
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• Ideal transformer in circuit form with practical components

• Leakage and magnetizing inductances broken up
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Magnetics – impedance transformation

• The impedance for 𝐿𝐿mp for the primary is:

• 𝑍𝑍 = 𝑗𝑗𝜔𝜔𝐿𝐿mp
• The ratio for voltages and currents in a transformer:

• 𝑣𝑣s = 𝑣𝑣p
𝑁𝑁s
𝑁𝑁p

and 𝑖𝑖s = 𝑖𝑖p
𝑁𝑁p
𝑁𝑁s

• The reflected impedance for 𝐿𝐿mp for the secondary is:

• 𝑣𝑣s
𝐼𝐼s

= 𝑍𝑍′ = 𝑣𝑣p
𝑁𝑁s
𝑁𝑁p

× 1
𝑖𝑖p

𝑁𝑁s
𝑁𝑁p

= 𝑁𝑁s
𝑁𝑁p

2
𝐿𝐿mp

• For the case of 𝐿𝐿ℓs in the secondary,

• 𝑣𝑣s
𝐼𝐼s

= 𝑍𝑍 = 𝑗𝑗𝜔𝜔𝐿𝐿ℓs

• 𝑣𝑣p = 𝑣𝑣s
𝑁𝑁p
𝑁𝑁s

and 𝑖𝑖p = 𝑖𝑖s
𝑁𝑁s
𝑁𝑁p

• 𝑣𝑣p
𝑖𝑖p

= 𝑍𝑍 = 𝑣𝑣s
𝑁𝑁p
𝑁𝑁s

× 1
𝑖𝑖s

𝑁𝑁p
𝑁𝑁s

= 𝑁𝑁p
𝑁𝑁s

2
𝐿𝐿ℓs
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Magnetics – T-model

• To simplify the measurement of the transformer in real 
life, the leakage inductance in the secondary can be 
reflected on to the primary.

• The impedance transformation from secondary to 
primary is:

• 𝐿𝐿ℓs′ = 𝑁𝑁p
𝑁𝑁s

2
𝐿𝐿ℓs = 𝑁𝑁p

𝑁𝑁s

2
1 − 𝑘𝑘 𝐿𝐿s

• Given that 𝐿𝐿p
𝐿𝐿𝑠𝑠

= 𝑁𝑁p
𝑁𝑁𝑠𝑠

,  𝐿𝐿s = 𝐿𝐿p
𝑁𝑁s
𝑁𝑁p

2

• 𝐿𝐿ℓs′ = 𝑁𝑁p
𝑁𝑁s

2
1 − 𝑘𝑘 𝐿𝐿s = 𝑁𝑁p

𝑁𝑁s

2
1 − 𝑘𝑘 𝐿𝐿p

𝑁𝑁s
𝑁𝑁p

2

• ∴ 𝐿𝐿ℓs′ = 1 − 𝑘𝑘 𝐿𝐿p
• This is called the ‘T-model’ of a transformer.
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Magnetics
Measuring the transformer



Magnetics – measuring the transformer

• This section looks at deriving the transformer 
equations without reflecting the secondary leakage into 
the primary.

• Open-circuiting and short-circuiting the transformer 
can be used to measure each component.

• If secondary is open-circuited (𝑖𝑖s = 0):

•
𝑣𝑣p
𝑣𝑣s = 𝑗𝑗𝜔𝜔

𝐿𝐿ℓp + 𝐿𝐿mp
𝑁𝑁s
𝑁𝑁p
𝐿𝐿mp

𝑁𝑁s
𝑁𝑁p
𝐿𝐿mp 𝐿𝐿ℓs + 𝐿𝐿ms

𝑖𝑖p
0

• 𝑣𝑣p = 𝑗𝑗𝜔𝜔𝐿𝐿ℓp𝑖𝑖p + 𝑗𝑗𝜔𝜔𝐿𝐿mp𝑖𝑖p + 𝑗𝑗𝜔𝜔 𝑁𝑁s
𝑁𝑁p
𝐿𝐿mp × 0

• ∴ 𝑣𝑣p = 𝑗𝑗𝜔𝜔𝐿𝐿ℓp𝑖𝑖p + 𝑗𝑗𝜔𝜔𝐿𝐿mp𝑖𝑖p
• 𝐿𝐿p = 𝐿𝐿ℓp + 𝐿𝐿mp
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Magnetics – measuring the transformer

• If secondary is open-circuited (𝑖𝑖p = 0):

•
𝑣𝑣p
𝑣𝑣s = 𝑗𝑗𝜔𝜔

𝐿𝐿ℓp + 𝐿𝐿mp
𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp

𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp 𝐿𝐿ℓs + 𝐿𝐿ms

0
𝑖𝑖s

• 𝑣𝑣s = 𝑗𝑗𝜔𝜔 𝑁𝑁p
𝑁𝑁𝑠𝑠
𝐿𝐿mp × 0 + 𝑗𝑗𝜔𝜔𝐿𝐿ℓs𝑖𝑖s + 𝑗𝑗𝜔𝜔 𝑁𝑁s

Np
𝐿𝐿ms𝑖𝑖s

• ∴ 𝑣𝑣s = 𝑗𝑗𝜔𝜔𝐿𝐿ℓs𝑖𝑖s + 𝑗𝑗𝜔𝜔 𝑁𝑁s
Np
𝐿𝐿ms𝑖𝑖s

• 𝐿𝐿s = 𝐿𝐿ℓs + 𝑁𝑁s
Np
𝐿𝐿ms
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Magnetics – measuring the transformer
• If secondary is short-circuited (𝑣𝑣s = 0):

•
𝑣𝑣p
0 = 𝑗𝑗𝜔𝜔

𝐿𝐿ℓp + 𝐿𝐿mp
𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp

𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp 𝐿𝐿ℓs + 𝐿𝐿ms

𝑖𝑖p
𝑖𝑖s

• 𝑣𝑣p = 𝑗𝑗𝜔𝜔𝐿𝐿sc𝑖𝑖p = 𝑗𝑗𝜔𝜔𝐿𝐿ℓp𝑖𝑖p + 𝑗𝑗𝜔𝜔𝐿𝐿mp𝑖𝑖p + 𝑗𝑗𝜔𝜔 𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp𝑖𝑖s

• 0 = 𝑗𝑗𝜔𝜔 𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp𝑖𝑖p + 𝑗𝑗𝜔𝜔𝐿𝐿ℓs𝑖𝑖s + 𝑗𝑗𝜔𝜔𝐿𝐿ms𝑖𝑖s

• Rearranging the equation for 𝑖𝑖s:

• −𝑗𝑗𝜔𝜔 𝑁𝑁s
𝑁𝑁𝑝𝑝
𝐿𝐿mp𝑖𝑖p = 𝑗𝑗𝜔𝜔𝐿𝐿ℓs𝑖𝑖s + 𝑗𝑗𝜔𝜔𝐿𝐿ms𝑖𝑖s

• ∴ 𝑖𝑖s = −
𝑗𝑗𝜔𝜔𝑁𝑁s

𝑁𝑁𝑝𝑝
𝐿𝐿mp

𝑗𝑗𝜔𝜔𝐿𝐿ℓs𝑖𝑖s+𝑗𝑗𝜔𝜔𝐿𝐿ms
𝑖𝑖p

• Substituting 𝑖𝑖s into equation for 𝑣𝑣p:

• 𝑣𝑣p = 𝑗𝑗𝜔𝜔 𝐿𝐿ℓp + 𝐿𝐿mp 𝑖𝑖p −
𝑗𝑗𝜔𝜔𝑁𝑁s

𝑁𝑁𝑝𝑝
𝐿𝐿mp

2

𝑗𝑗𝜔𝜔𝐿𝐿ℓs𝑖𝑖s+𝑗𝑗𝜔𝜔𝐿𝐿ms
𝑖𝑖p
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Magnetics – measuring the transformer

• Given that 𝐿𝐿p = 𝐿𝐿ℓp + 𝐿𝐿mp,  𝐿𝐿s = 𝐿𝐿ℓs + 𝐿𝐿ms and M = 𝑁𝑁s
𝑁𝑁p
𝐿𝐿mp:

• 𝑣𝑣p = 𝑗𝑗𝜔𝜔 𝐿𝐿ℓp + 𝐿𝐿mp 𝑖𝑖p −
𝑗𝑗𝜔𝜔𝑁𝑁s

𝑁𝑁𝑝𝑝
𝐿𝐿mp

2

𝑗𝑗𝜔𝜔𝐿𝐿ℓs𝑖𝑖s+𝑗𝑗𝜔𝜔𝐿𝐿ms
𝑖𝑖p

• 𝑣𝑣p = 𝑗𝑗𝜔𝜔𝐿𝐿p𝑖𝑖p −
𝑗𝑗𝜔𝜔𝑀𝑀2

𝑗𝑗𝜔𝜔𝐿𝐿s
𝑖𝑖p

• Since 𝑣𝑣p = 𝑗𝑗𝜔𝜔𝐿𝐿sc𝑖𝑖p,

• 𝑗𝑗𝜔𝜔𝐿𝐿sc𝑖𝑖p = 𝑗𝑗𝜔𝜔𝐿𝐿p𝑖𝑖p −
𝑗𝑗𝜔𝜔𝜔𝜔2

𝑗𝑗𝜔𝜔𝐿𝐿s
𝑖𝑖p

• 𝐿𝐿sc = 𝐿𝐿p −
𝑀𝑀2

𝐿𝐿s

• Rearranging:

• 𝑀𝑀2 = 𝐿𝐿sc − 𝐿𝐿p 𝐿𝐿s

• ∴ 𝑀𝑀 = 𝐿𝐿sc − 𝐿𝐿p 𝐿𝐿s

• Since 𝑀𝑀 = 𝑘𝑘 𝐿𝐿p𝐿𝐿s:

• 𝑘𝑘 = 𝑀𝑀
𝐿𝐿p𝐿𝐿s
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Magnetics – measuring the transformer

• An LCR metre is often used to measure inductances.

• The following can be measured:

• 𝐿𝐿p = 𝐿𝐿ℓp + 𝐿𝐿mp
• 𝐿𝐿s = 𝐿𝐿ℓs + 𝐿𝐿ms

• 𝐿𝐿sc = 𝐿𝐿p −
𝑀𝑀2

𝐿𝐿s

• Given 𝐿𝐿p, 𝐿𝐿s and 𝐿𝐿sc:

• 𝑀𝑀 = 𝐿𝐿sc − 𝐿𝐿p 𝐿𝐿s

• 𝑘𝑘 = 𝑀𝑀
𝐿𝐿p𝐿𝐿s
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Magnetics – measurement
• Using an LCR metre, the inductance of the transformer can be 

measured.
• If the secondary is open-circuited, primary terminals measure 

the self-inductance of the primary winding:

• 𝐿𝐿oc = (1 − 𝑘𝑘)𝐿𝐿p+𝑘𝑘𝑘𝑘p = 𝐿𝐿p
• Using the turns ratio, the self-inductance of the secondary 

winding can be determined:

• 𝐿𝐿s = 𝑁𝑁p
𝑁𝑁s

2
𝐿𝐿p

• If the secondary is short-circuited, secondary terminals 
measures:

• 𝐿𝐿sc = (1 − 𝑘𝑘)𝐿𝐿p+ (1−𝑘𝑘)𝐿𝐿p𝑘𝑘𝑘𝑘p
(1−𝑘𝑘)𝐿𝐿p+𝑘𝑘𝑘𝑘p

= (1 − 𝑘𝑘)𝐿𝐿p+ (1−𝑘𝑘)𝐿𝐿p𝑘𝑘𝑘𝑘p
𝐿𝐿p

• = (1 − 𝑘𝑘)𝐿𝐿p+ 1 − 𝑘𝑘 𝑘𝑘𝑘𝑘p = 𝐿𝐿p − 𝑘𝑘𝑘𝑘p + 𝑘𝑘𝑘𝑘p − 𝑘𝑘2𝐿𝐿p
• = 𝐿𝐿p − 𝑘𝑘2𝐿𝐿p
• Then the coupling factor of the transformer can be found by:

• 𝐿𝐿oc−𝐿𝐿sc
𝐿𝐿oc

= 𝐿𝐿p−𝐿𝐿p+𝑘𝑘2𝐿𝐿p
𝐿𝐿p

= 𝑘𝑘

• From here, 𝑀𝑀 = 𝑘𝑘 𝐿𝐿p𝐿𝐿s
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