

Electeng 311

Electronics Systems DesignMagnetics

Seho Kim

Contents

- What is magnetics?
- Magnetics revision
- Magnetics Laws
- Magnetic circuits and core saturation
- Ideal transformer
- Coupling factor
- Practical transformer

Learning outcomes

- Revise magnetic concepts and laws.
- Understand core saturation and the effect of air gaps.
- Understand and derive ideal transformer models.
- Understand the constraints in practical transformer model.

Magnetics

Magnetic circuits

Magnetics – introduction

THE UNIVERSITY OF AUCKLAND
To Whate Wasage o Tankir Makarea
N E W Z E A L A N D

- Everything in electrical engineering are a combination of the basic elements.
- Magnetics encompass a wide range of devices that create or manipulate magnetic fields.

• Passive and active elements in electrical circuits

• A bar magnet [1]

• An electric motor [2]

• Transformers [3] and [4]

- [1] https://commons.wikimedia.org/wiki/File:Bar_magnet.jpg
- [2] https://www.hisour.com/electric-motor-40853/
- [3] https://nz.mouser.com/new/bel-signal-transformer/signal-transformer-two-4-one-power-transformers/
- [4] https://the-rsgroup.com/the-1000th-power-transformer/

Magnetics – magnetomotive force

- Magnetic fields are analogous to electric fields.
- An electric field is formed when there is a difference in electric potential between two points. The electric potential difference is called electromotive force or voltage (*V*).
- Magnetomotive force (F_m) can be considered as 'magnetic potential difference' between two points.
- A <u>magnetic field strength</u> (H) is generated when F_m is present between two points separated by a distance (ℓ) as given by:
- $F_{\rm m} = \int_{x_1}^{x_2} H \cdot d\ell$
- If *H* is assumed to be uniform, the equation is reduced to:
- $F_{\rm m} = H\ell$
- Similarly, the voltage in an uniform electric field (*E*) is given by:
- $V = E\ell$

Magnetomotive force and voltage

Magnetics – magnetic field

- Note that B and H are referring to two different things.
- Given the same coil wound in air and a magnetic material:
- <u>Magnetic field strength</u> (*H*) is dependent only on the magnetomotive force applied to the winding.
- <u>Magnetic flux density</u> (*B*) is dependent on the *H* as well as the permeability of the material the magnetic flux is passing through.
- Note that magnetic flux density (*B*) is also often simply called the magnetic field.
- The two are related by the equation: $B = \mu H$.
- **Permeability** (μ) indicates how easily magnetic flux can pass through the material.
- Magnetic materials increase μ so more B is generated per H within the coil.

$$H\!=\!rac{F_{
m m}}{\ell}$$

$$B = \mu H$$

• Magnetic flux in air or in a magnetic core

Magnetics – permeability

THE UNIVERSITY OF AUCK LAND
TO WARRE WIRE BY EAL AND

- The permeability can be broken up into two parts:
- Permeability of vacuum (μ_0) is the 'reference' permeability for magnetic field.
- $\mu_0 = 4\pi \times 10^{-7} = 1.2566370614 \times 10^{-6} \text{ Hm}^{-1}$
- If magnetic flux only travelled in vacuum, $B = \mu_0 H$.
- Relative permeability (μ_r) is a 'multiplier' that improves overall permeability for the magnetic field.
- For example, air has μ_r of 1 while typical ferrite core has μ_r of 1000 to 3000.
- So the relationship between B and H becomes:
- $B = \mu_0 \mu_r H$

$$H\!=\!rac{F_{
m m}}{\ell}$$

$$B = \mu H$$

• Magnetic flux in air or in a magnetic core

Magnetics – magnetic flux

- If $F_{\rm m}$ is analogous to V, magnetic flux (ϕ) is analogous to electric current (I).
- If magnetic flux passes through a surface with an area of *A*, the **magnetic flux density** (*B*) can be found given:
- $\phi = \int_S B \cdot dA$
- If B is assumed to be uniform, the equation can be simplified to:
- $\phi = BA$
- Similarly, uniform current passing through a surface with an area of *A* results in current density (*J*).
- I = JA

Magnetic flux and electric current

Magnetics – reluctance

• Given that
$$H = \frac{B}{\mu}$$
 and $B = \frac{\phi}{A}$,

•
$$F_{\rm m} = \frac{B}{\mu} \ell = \frac{\ell}{\mu A} \phi$$

- Reluctance $(R_{\rm m})$ is given by: $R_{\rm m} = \frac{\ell}{\mu A}$.
- $\therefore F_{\rm m} = \phi R_{\rm m}$
- Similar to Ohm's law: V = IR.
- $R=\frac{\ell}{\sigma A}$,
- σ is the electrical conductivity.

Magnetics – magnetic circuits and electric circuits

• Many of the terms between magnetic circuits and electrical circuits are quite similar with each other.

Magnetic quantity	Electric quantity
Magnetomotive force $(F_{\rm m})$	Electromotive force or voltage (V)
Magnetic field strength (H)	Electric field strength (E)
Magnetic flux (ϕ)	Current (I)
Magnetic flux density (B)	Current density (J)
Reluctance (R _m)	Resistance (R)
Permeability (μ)	Conductivity (σ)

• Analogous terms between magnetic and electric circuits

Reluctance ($R_{\rm m}$)

$$R_{
m m}=rac{F_{
m m}}{oldsymbol{\phi}}=rac{\ell}{\mu A}$$

• Reluctance in magnetic circuits

Comparison of electric and magnetic circuits

Magnetics – laws

- Faraday's Law: $v(t) = \frac{d\phi(t)}{dt}$
- If B is assumed to be uniform, $v(t) = A \frac{dB(t)}{dt}$.
- Voltage induced in a winding is dependent on the change of magnetic field passing through the crosssectional area of the loop.
- <u>Lenz's Law</u>: $v'(t) = -A \frac{dB(t)}{dt}$
- The induced voltage has a polarity that counteracts the magnetic field into the loop.
- <u>Ampere's Law</u>: $\int_S H \cdot d\ell = \text{total current enclosed in the path.}$
- Given uniform magnetic field, $F_{\rm m}(t) = H(t)\ell_{\rm m} = i(t)$.
- Net magnetomotive force around a closed loop is equal to the total current passing through the path.

Magnetic flux into open and closed loops

· A current inducing magnetic field within a magnetic material

Magnetics – inductance

- From Faraday's Law, the voltage in each turn of wire is:
- $v_{\text{turn}}(t) = \frac{d\phi(t)}{dt}$
- The same flux passes through each turn of wire so total voltage across the winding is given by:

•
$$v(t) = Nv_{\text{turn}}(t) = N\frac{d\phi(t)}{dt}$$

- The average magnetic field within the winding is:
- $v(t) = NA \frac{dB(t)}{dt}$
- Given that $B = \mu_0 \mu_r H$,
- $v(t) = \mu_0 \mu_r NA \frac{dH(t)}{dt}$

• Multiple turns of wire forming an inductor around the magnetic core

Magnetics – inductance

- Ampere's Law: $H(t)\ell_{\rm m} = i(t)$
- The number of turns multiply the current in the enclosed area.
- $\therefore H(t)\ell_{\rm m} = Ni(t)$
- $H(t) = \frac{Ni(t)}{\ell_{\rm m}}$
- Since $v(t) = \mu_0 \mu_r NA \frac{dH(t)}{dt}$,
- $v(t) = \frac{\mu_0 \mu_r N^2 A}{\ell_m} \frac{di(t)}{dt}$
- Inductance (L) is defined as $L = \frac{\mu_0 \mu_r N^2 A}{\ell_m}$ so:
- $v(t) = L \frac{di(t)}{dt}$
- Inductance resists the change in the current inside of a coil.

• Ampere's Law for multiple turn windings.

Magnetics – core saturation

- Magnetic materials cannot pass infinite amount of magnetic field.
- The B-H curve describes the amount of *B* within the core for a given amount of *H*.
- At saturation, $B = B_{SAT} :: \frac{dB(t)}{dt} = 0$
- This sets the Faraday's Law to be:

•
$$v(t) = nA \frac{dB(t)}{dt} = 0$$

•
$$\dot{v}(t) = L \frac{di(t)}{dt} = 0$$

- As no amount of voltage is induced between the terminals, the inductor behaves like a short circuit under core saturation.
- This shows that the behaviour of the inductor only holds when the core is not saturated.

An example inductor wound around a magnetic core

Magnetics – magnetic circuits

•
$$\phi_1 + \phi_2 = \phi_3$$

- Similarly, sum of the magnetomotive force in a loop is equal to zero (like KVL):
- $F_{\rm m} = F_{\rm core} + F_{\rm air}$
- Given that the core has an air gap, the reluctances are:

•
$$R_{\rm core} = \frac{\ell_{\rm core}}{\mu_0 \mu_{\rm r} A}$$
 and $R_{\rm air} = \frac{\ell_{\rm air}}{\mu_0 A}$

•
$$R_{\rm e} = R_{\rm core} + R_{\rm air} = \frac{\ell_{\rm core}}{\mu_0 \mu_{\rm r} A} + \frac{\ell_{\rm air}}{\mu_0 A} = \frac{\ell_{\rm core}}{\mu_0 \mu_{\rm r} A} + \frac{\ell_{\rm air} \mu_{\rm r}}{\mu_0 \mu_{\rm r} A}$$

$$= \frac{\ell_{\text{core}} + \ell_{\text{air}} \mu_{\text{r}}}{\mu_{0} \mu_{\text{r}} A} = \frac{\frac{\ell_{\text{core}}}{\mu_{\text{r}}} + \ell_{\text{air}}}{\mu_{0} A}$$

• Here, R_e is the effective reluctance of the circuit.

Node analysis for magnetic circuit

Magnetic circuit of an inductor wound on a core

Magnetics – magnetic circuits

- From Ampere's Law:
- $F_{\rm m} = NI = \phi(R_{\rm core} + R_{\rm air}) = \phi R_{\rm e}$
- $\therefore \phi = \frac{NI}{R_e}$
- A higher reluctance decreases the magnetic flux flowing in the magnetic circuit.
- Since $R_{\rm e}=rac{\ell}{\mu_0\mu_{\rm e}A}$ and $L=rac{\mu_0\mu_{\rm e}N^2A}{\ell_{
 m m}}$,
- If μ_e is reduced due to higher R_e , the inductance of the winding decreases.

Node analysis for magnetic circuit

Magnetic circuit of an inductor wound on a core

What is the inductance of a winding around a gapped core?

•
$$R_{\text{core}} = \frac{\ell_{\text{core}}}{\mu_0 \mu_r A}$$

•
$$R_{\rm air} = \frac{\ell_{\rm air}}{\mu_0 A}$$

•
$$R_{\rm e} = \frac{\frac{\ell_{\rm core}}{\mu_{\rm r}} + \ell_{\rm ain}}{\mu_{\rm 0}A}$$

$$L = \frac{\mu_0 \mu_e N^2 A}{\ell_m} = \frac{N^2}{R_e}$$

• What is the effective permeability (μ_e) of the gapped core?

•
$$\mu_{\rm e} = \frac{\ell_{\rm core} + \ell_{\rm air}}{\mu_{\rm o} R_{\rm e} A}$$

• Example inductor wound on a gapped core

What is the inductance of a winding around a gapped core?

•
$$R_{\text{core}} = \frac{\ell_{core}}{\mu_0 \mu_r A} = \frac{0.1}{4\pi \times 10^{-7} \times 2000 \times 0.0004} = 99472 \text{ H}^{-1}$$

•
$$R_{\text{air}} = \frac{\ell_{air}}{\mu_0 A} = \frac{0.002}{4\pi \times 10^{-7} \times 0.0004} = 3978874 \text{ H}^{-1}$$

•
$$L = \frac{\mu_0 \mu_e N^2 A}{\ell_m} = \frac{N^2}{R_e} = \frac{3^2}{99472 + 3978874} = 0.00000221 = 2.21 \,\mu\text{H}$$

• What is the effective permeability (μ_e) of the gapped core?

•
$$\mu_{\rm e} = \frac{\ell}{\mu_0 R_{\rm e} A} = \frac{0.102}{4\pi \times 10^{-7} \times 4078346 \times 0.0004} = 49.8$$

• Example inductor wound on a gapped core

- What is the saturation current (I_{SAT}) if $B_{SAT} = 400 \text{ mT}$?
- $H\ell_{\rm m} = NI$
- $B = \mu_0 \mu_r H$
- $I = \frac{H\ell_{\rm m}}{N} = \frac{B\ell_{\rm m}}{N\mu_{\rm 0}\mu_{\rm r}}$
- Effective reluctance: $R_{\rm e} = \frac{\ell}{\mu_{\rm e}A}$,
- $I = \frac{H\ell_{\rm m}}{N} = \frac{B\ell_{\rm m}}{N\mu_{\rm 0}\mu_{\rm e}} = \frac{BA}{N}R_{\rm e}$

• Example inductor wound on a gapped core

• B-H curve for inductor wound on a gapped core

- What is the saturation current (I_{SAT}) if $B_{SAT} = 400$ mT?
- $H\ell_{\rm m} = NI$
- $B = \mu_0 \mu_r H$
- $I = \frac{H\ell_{\rm m}}{N} = \frac{B\ell_{\rm m}}{N\mu_{\rm 0}\mu_{\rm r}}$
- Effective reluctance: $R_{\rm e} = \frac{\ell}{\mu_{\rm e}A}$,
- $I = \frac{H\ell_{\rm m}}{N} = \frac{B\ell_{\rm m}}{N\mu_{\rm 0}\mu_{\rm e}} = \frac{BA}{N}R_{\rm e}$
- $I_{\text{sat}} = \frac{B_{\text{SAT}}A}{N} R_{\text{e}} = \frac{0.4 \times 0.0004}{3} 4078346 = 218 \text{ A}$

• Example inductor wound on a gapped core

• B-H curve for inductor wound on a gapped core

Magnetics -core without air gap

What is the inductance if the core had no air gap?

•
$$R_{\text{core}} = \frac{\ell_{core}}{\mu_0 \mu_r A} = \frac{0.102}{4\pi \times 10^{-7} \times 2000 \times 0.0004} = 101461 \text{ H}^{-1} = 1 \times 10^5 \text{ H}^{-1}$$

•
$$L = \frac{3^2}{101461} = 88.70 \, \mu \text{H}$$

• Using the same conditions as before, if $B_{SAT} = 400 \text{ mT}$,

•
$$i_{\text{sat}} = \frac{B_{\text{SAT}}A}{N} R_{\text{core}} = \frac{0.4 \times 0.0004}{3} \times 101461 = 5.41 \text{ A}$$

- Remember that 2mm air gap created reluctance of about $4 \times 10^6 \,\mathrm{H}^{-1}$.
- A small air gap can form a large reluctance in the magnetic flux path.
- The high inductance is an indicator of the winding inducing a large magnetic flux per input current.
- However, the core reaches B_{SAT} quickly if too much magnetic flux is generated.
- The air gap in the cores increase the effective reluctance to push the saturation point further away.

Example inductor wound on a core without an air gap

• B-H curves for inductor wound on a different cores

Magnetics – summary

• Magnetic circuits are analogous to electric circuits

Magnetic quantity	Electric quantity
Magnetomotive force $(F_{\rm m})$	Electromotive force or voltage (V)
Magnetic field strength (H)	Electric field strength (E)
Magnetic flux (ϕ)	Current (I)
Magnetic flux density (B)	Current density (J)
Reluctance $(R_{\rm m})$	Resistance (R)
Permeability (μ)	Conductivity (σ)

- Faraday's Law: $v(t) = \frac{d\phi(t)}{dt}$
- Lenz's Law: $v'(t) = -A \frac{dB(t)}{dt}$
- Ampere's Law: $\int_{S} H \cdot d\ell$
- Magnetic circuits can be formed using $F_{\rm m}$, ϕ and $R_{\rm m}$.
- Magnetic materials saturate and air gaps improve current carrying capacity by moving the saturation point.

Magnetic circuit of an inductor wound on a core with an air gap

Magnetics

Ideal transformer

Magnetics – transformer

- Transformers are used in a wide range of applications to step the voltages up and down as well as for isolation purposes.
- A transformer transfers energy using magnetic flux without any conductive connection.
- According to Ampere's Law, electric current (i_p) generates a magnetic field strength of H.
- Ampere's Law: $H(t) = \frac{Ni(t)}{\ell_m}$
- Within the core, magnetic field given by: $B = \mu_0 \mu_r H$
- According to Faraday's Law, an electromotive force is induced in the secondary coil.
- Faraday's Law: $v(t) = NA \frac{dB(t)}{dt} = N \frac{d\phi(t)}{dt}$
- Since only changes in magnetic flux induce voltage in the secondary, DC input does not induce any output.

Transformers [3] and [4]

· Current into the primary coil inducing voltage in the secondary coil

Magnetics – ideal transformer

- An ideal transformer has:
 - No losses in the core and the winding
 - Infinite relative permeability in the core $(\mu_r = \infty)$
 - No leakage magnetic flux (ϕ_{L_p} and $\phi_{L_s} = 0$)
- Ideally, all magnetic flux generated by one coil passes through the other coil in a transformer.
- Leakage magnetic flux are magnetic flux generated by the energised coil that does not pass through the other coil.
- N_p and N_s refer to the number of turns in the primary coil and the secondary coil respectively.
- The magnetic circuit for a transformer gives:

•
$$R_{\text{core}} = \frac{\ell_{core}}{\mu_0 \mu_r A}$$

•
$$F_{\text{core}} = N_{\text{p}}i_{\text{p}} + N_{\text{s}}i_{\text{s}}$$

•
$$\phi R_{\text{core}} = N_{\text{p}} i_{\text{p}} + N_{\text{s}} i_{\text{s}}$$

An example ideal transformer

• Magnetic circuit for an ideal transformer

Magnetics – ideal transformer

- According to the magnetic circuit:
- $F_{\text{core}} = \phi R_{\text{core}}$
- In an ideal transformer, the reluctance of the core should be zero ($R_{\rm core}=0$) since $\mu_{\rm r}=\infty$.
- $\therefore F_{\text{core}} = 0$
- Then the magnetic circuit becomes:
- $\bullet \quad 0 = N_{\rm p}i_{\rm p} + N_{\rm s}i_{\rm s}$
- Since Faraday's Law states that:
- $v_{\rm p} = N_{\rm p} \frac{d\phi(t)}{dt}$
- $v_{\rm S} = N_{\rm S} \frac{d\phi(t)}{dt}$
- Equate the two equations above by $\frac{d\phi(t)}{dt}$ to give:
- $\frac{d\phi(t)}{dt} = \frac{v_{\rm p}}{N_{\rm p}} = \frac{v_{\rm s}}{N_{\rm s}}$

• An example ideal transformer

Magnetic circuit for an ideal transformer

Magnetics – ideal transformer

- The previous equation can be modified to give:
- $\frac{v_{\rm p}}{v_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$
- Turns ratio of the transformer is defined as $\frac{N_p}{N_s}$.
- By modifying the turns ratio of the transformer, the secondary voltage can be stepped up or down.
- If the turns ratio is changed to modify the voltage, the current has to change accordingly.
- Given that an ideal transformer does not store any energy:

•
$$v_{\rm p}i_{\rm p}+v_{\rm s}i_{\rm s}=0$$

•
$$v_{\rm p}i_{\rm p}=-v_{\rm s}i_{\rm s}$$

- Divide the equation using the previous equation $\frac{v_p}{N_p} = \frac{v_s}{N_s}$:
- $\frac{i_{\rm p}}{N_{\rm p}} = -\frac{i_{\rm s}}{N_{\rm s}}$
- $\frac{i_s}{i_p} = -\frac{N_p}{N_s}$

Magnetics – dot notation

• Voltage going into the dot = voltage going out of the dot

Magnetics

Practical transformer

Magnetics – coupling factor

- *k* is the **coupling factor** between the primary and secondary coils.
- k is defined to be $0 \le k \le 1$ and indicates the proportion of magnetic flux generated by the primary that passes through the secondary.
- In this case of an ideal transformer, all of the magnetic flux generated from the energised coil passes through the other coil (k = 1).

Examples of high and low coupling factor

Magnetics – practical transformer

THE UNIVERSITY OF AUCKLAND
To Whate Whange o Thead Plataurau
N E W Z E A L A N D

- In real life, a practical transformer has
 - Losses in the coils and the core
 - Finite relative permeability (μ_r) in the core
 - Leakage magnetic flux $(\phi_{L_p}$ and $\phi_{L_s}) \neq 0$
 - Coupling factor $(k) \neq 1$.
- Infinite relative permeability does not exist in real life so some of the magnetic flux generated by the energised coil 'leaks out'.
- This leads the magnetic flux to be divided into two parts:
- Magnetising magnetic flux (mutual flux) ($\phi_{\rm m}$) passes through the core and is subject to saturation and core losses.
- Leakage magnetic flux (ϕ_{L_p} and ϕ_{L_s}) is generated by the energised coil, but does not reach the other coil.

An example transformer

• Ideal transformer in circuit form with practical components

Magnetics – practical transformer

- If the magnetising inductance and leakage inductance could be separated out physically, they would be separate inductors wound in a magnetic core and air cores.
- Magnetising inductance (L_m) is due to magnetising magnetic flux (ϕ_m) .
- Leakage inductances ($L_{\ell p}$ and $L_{\ell s}$) is due to the leakage magnetic flux (ϕ_{L_p} and ϕ_{L_s}).
- The leakage inductance adds to the total inductance, but does not help with transferring energy.
- In a practical transformer where $(k) \neq 1$,
- $L_{\rm mp} = kL_{\rm p}$ and $L_{\rm ms} = kL_{\rm s}$
- $L_{\ell p} = (1 k)L_p$ and $L_{\ell s} = (1 k)L_s$
- For a flyback converter, leakage inductances create issues such as ringing in the switches so should be minimised.

Representation of separate magnetizing inductance and leakage inductances

• Division of leakage and magnetising inductances in terms of coupling factor

Magnetics – T-model

- To simplify the measurement of the transformer in real life, the leakage inductance in the secondary can be reflected on to the primary.
- The impedance transformation from secondary to primary is:

•
$$L'_{\ell s} = \left(\frac{N_p}{N_s}\right)^2 L_{\ell s} = \left(\frac{N_p}{N_s}\right)^2 (1 - k) L_s$$

• Given that
$$\sqrt{\frac{L_p}{L_s}} = \frac{N_p}{N_s}$$
, $L_s = L_p \left(\frac{N_s}{N_p}\right)^2$

•
$$L'_{\ell s} = \left(\frac{N_{\rm p}}{N_{\rm s}}\right)^2 (1 - k) L_{\rm s} = \left(\frac{N_{\rm p}}{N_{\rm s}}\right)^2 (1 - k) L_{\rm p} \left(\frac{N_{\rm s}}{N_{\rm p}}\right)^2$$

•
$$: L'_{\ell s} = (1-k)L_{p}$$

• This is called the 'T-model' of a transformer.

Magnetics – measurement

- Using an LCR metre, the inductance of the transformer can be measured.
- Open-circuit the secondary and measure the inductance as: $L_{\ell p} + L_{\rm m} = (1 k)L_{\rm p} + kL_{\rm p} = L_{\rm p}$
- Short-circuit the secondary and measure the inductance as: $L_{\rm sc}$
- Coupling factor is given by: $\sqrt{\frac{L_p L_{sc}}{L_p}} = k$
- Using the turns ratio, the self-inductance of the secondary winding can be determined:
- $L_{\rm s} = \left(\frac{N_{\rm p}}{N_{\rm s}}\right)^2 L_{\rm p}$
- If turns ratio is unknown, measuring the inductance in the secondary with the primary open-circuited will also measure the secondary self-inductance.

Transformers – summary

- In real life, a practical transformer has
 - Losses in the coils and the core
 - Finite relative permeability (μ_r) in the core
 - Leakage magnetic flux $(\phi_{L_D}$ and $\phi_{L_S}) \neq 0$
 - Coupling factor $(k) \neq 1$.
- Turns ratio of the transformer is defined as $\frac{N_p}{N_s}$.
- Self-inductance is split into **magnetising inductance** and leakage inductance.
- Coupling factor is a ratio measuring how much magnetic flux generated from one coil is passing through another coil.
- Dot notation:
 VOLTAGE INTO THE DOT -> VOLTAGE OUT OF THE DOT
- Use the LCR meter in the lab to find the transformer parameters.

• An example ideal transformer

· T-model of a transformer

Appendix

Derivation of μ_0

- Two conductors are spaced 1 metre apart from each other. The conductors have 1 A of current flowing in opposing directions.
- Then the magnetic field strength due to conductor A at a distance of 1 metre is:

•
$$H = \frac{I}{\ell_{\rm m}} = \frac{1}{2\pi} \,{\rm Am}^{-1}$$

- Here, $\ell_{\rm m}$ is the closed circular path around the conductor.
- Force exerted on a conductor one metre away per ampere is defined as 2×10^{-7} Nm⁻¹.
- Assuming the conductors have the same length, the magnetic field can be found as:

•
$$B = \frac{F}{I} = \frac{2 \times 10^{-7}}{1}$$
T

• Then
$$\mu_0 = \frac{B}{H} = 2 \times 10^{-7} \times 2\pi = 4\pi \times 10^{-7} \text{ Hm}^{-1}$$

 Two parallel conductors with currents flowing in opposing directions.

Relationship between mutual inductance and magnetising inductance

- Inductance (L) is defined as $L = \frac{\mu_0 \mu_r n^2 A}{\ell_m}$ so:
- $\bullet \quad \frac{L_{\mathrm{p}}}{L_{\mathrm{s}}} = \frac{\frac{\mu_{\mathrm{0}}\mu_{\mathrm{r}}N_{\mathrm{p}}^{2}A}{\ell_{\mathrm{m}}}}{\frac{\mu_{\mathrm{0}}\mu_{\mathrm{r}}N_{\mathrm{s}}^{2}A}{\ell_{\mathrm{m}}}} = \left(\frac{N_{\mathrm{p}}}{N_{\mathrm{s}}}\right)^{2}$
- $\therefore \sqrt{\frac{L_p}{L_s}} = \frac{N_p}{N_s}$
- Mutual inductance is defined as: $M = k\sqrt{L_pL_s}$
- $M\frac{1}{L_{\rm p}} = k\sqrt{L_{\rm p}L_{\rm s}}\frac{1}{L_{\rm p}}$
- $M\frac{1}{L_{\rm p}} = k\sqrt{\frac{L_{\rm s}}{L_{\rm p}}} = k\frac{N_{\rm s}}{N_p}$
- $M = kL_{\rm p} \frac{N_{\rm s}}{N_{\rm p}}$
- Since $L_{\rm mp} = kL_{\rm p}$
- $M = \frac{N_S}{N_p} L_{\rm mp}$
- $L_{\rm mp} = \frac{N_{\rm p}}{N_{\rm s}} M$
- L_{ms} is L_{mp} reflected on to the secondary so multiplied by $\left(\frac{N_s}{N_p}\right)^2$
- $L_{\text{ms}} = \left(\frac{N_{\text{s}}}{N_{\text{p}}}\right)^2 \frac{N_{\text{p}}}{N_{\text{s}}} M = \frac{N_{\text{s}}}{N_{\text{p}}} M$

Magnetics

Ideal transformer

Magnetics – ideal transformer

- The ideal transformer in the circuit can be further broken down two electrically separated circuits.
- Previously Faraday's Law was derived to find:
- $v(t) = L \frac{di(t)}{dt}$
- In frequency domain, this is re-written as: $v = j\omega Li$
- ω is the **angular frequency** given by $\omega = 2\pi f$.
- Here, *f* is the frequency of the input waveform.
- ωL gives the reactance of the inductor (X_L) .
- The two electrically separated coils are magnetically connected by the **mutual inductance** (*M*).
- Mutual inductance can be used to find the voltage induced from one circuit to another as:
- $v = j\omega Mi$.

Ideal transformer in circuit form

• Ideal transformer in circuit broken down into inductance and induced voltages

Magnetics – ideal transformer

- Using the derivations of Faraday's Law from before, an ideal transformer can be described using the following equations:
- $v_{\rm p} = j\omega L_{\rm p} i_{\rm p} + j\omega M i_{\rm s}$
- $v_s = j\omega M i_p + j\omega L_s i_s$
- L_p is the self-inductance of the primary coil.
- L_s is the self-inductance of the secondary coil.
- This can be re-written in the matrix form as:

•
$$\begin{bmatrix} v_{p} \\ v_{s} \end{bmatrix} = \begin{bmatrix} j\omega L_{p} & j\omega M \\ j\omega M & j\omega L_{s} \end{bmatrix} \begin{bmatrix} i_{p} \\ i_{s} \end{bmatrix} = j\omega \begin{bmatrix} L_{p} & M \\ M & L_{s} \end{bmatrix} \begin{bmatrix} i_{p} \\ i_{s} \end{bmatrix}$$

• Ideal transformer in circuit broken down into inductance and induced voltages

Magnetics

Practical transformer

Magnetics – practical transformer

THE UNIVERSITY OF AUCKLAND
To Whate Wangs o Tankir Mauerus
N E W Z E A L A N D

- In real life, a practical transformer has
 - Losses in the coils and the core
 - Finite relative permeability (μ_r) in the core
 - Leakage magnetic flux $(\phi_{L_p}$ and $\phi_{L_s}) \neq 0$
 - Coupling factor $(k) \neq 1$.
- Infinite relative permeability does not exist in real life so some of the magnetic flux generated by the energised coil 'leaks out'.
- This leads the magnetic flux to be divided into two parts:
- Magnetising magnetic flux (ϕ_m) passes through the core and is subject to saturation and core losses.
- Leakage magnetic flux (ϕ_{L_p} and ϕ_{L_s}) is generated by the energised coil, but does not reach the other coil.

An example transformer

• Ideal transformer in circuit form with practical components

Magnetics – practical transformer

- If the magnetising inductance and leakage inductance could be separated out physically, they would be separate inductors wound in a magnetic core and air cores.
- <u>Magnetising inductance</u> (L_m) is due to magnetising magnetic flux (ϕ_m) .
- Leakage inductances ($L_{\ell p}$ and $L_{\ell s}$) is due to the leakage magnetic flux (ϕ_{L_p} and ϕ_{L_s}).
- The leakage inductance adds to the total inductance, but does not help with transferring energy.
- In a practical transformer where $(k) \neq 1$,
- $L_{\rm mp} = kL_{\rm p}$ and $L_{\rm ms} = kL_{\rm s}$
- $L_{\ell p} = (1 k)L_p$ and $L_{\ell s} = (1 k)L_s$
- For a flyback converter, leakage inductances create issues such as ringing in the switches so should be minimised*.

Representation of separate magnetizing inductance and leakage inductances

• Division of leakage and magnetising inductances in terms of coupling factor

Magnetics – practical transformer

- The previous matrix with ideal transformer:
- $\begin{bmatrix} v_{\rm p} \\ v_{\rm s} \end{bmatrix} = j\omega \begin{bmatrix} L_{\rm p} & M \\ M & L_{\rm s} \end{bmatrix} \begin{bmatrix} i_{\rm p} \\ i_{\rm s} \end{bmatrix}$
- Substituting: $L_{\rm p}=j\omega L_{\ell \rm p}+j\omega L_{\rm mp}$ and $L_{\rm s}=j\omega L_{\ell \rm s}+j\omega L_{\rm ms}$,

•
$$\begin{bmatrix} v_{\rm p} \\ v_{\rm s} \end{bmatrix} = j\omega \begin{bmatrix} L_{\ell \rm p} + L_{\rm mp} & M \\ M & L_{\ell \rm s} + L_{\rm ms} \end{bmatrix} \begin{bmatrix} i_{\rm p} \\ i_{\rm s} \end{bmatrix}$$

- Mutual inductance and magnetising inductance from the perspective of the primary are related as:
- $M = \frac{N_s}{N_p} L_{mp}$
- Note that from the perspective of the secondary:

•
$$M = \frac{N_{\rm p}}{N_{\rm s}} \left(\frac{N_{\rm s}}{N_{\rm p}}\right)^2 L_{\rm mp} = \frac{N_{\rm s}}{N_{\rm p}} L_{\rm ms}$$

• So the matrix can be updated:

•
$$\begin{bmatrix} v_{\rm p} \\ v_{\rm s} \end{bmatrix} = j\omega \begin{bmatrix} L_{\ell \rm p} + L_{\rm mp} & \frac{N_{\rm s}}{N_p} L_{\rm mp} \\ \frac{N_{\rm s}}{N_p} L_{\rm mp} & L_{\ell \rm s} + L_{\rm ms} \end{bmatrix} \begin{bmatrix} i_{\rm p} \\ i_{\rm s} \end{bmatrix}$$

• Ideal transformer in circuit form with practical components

Leakage and magnetizing inductances broken up

Magnetics – impedance transformation

- The impedance for $L_{\rm mp}$ for the primary is:
- $Z = j\omega L_{\rm mp}$
- The ratio for voltages and currents in a transformer:

•
$$v_{\rm s} = v_{\rm p} \frac{N_{\rm s}}{N_{\rm p}}$$
 and $i_{\rm s} = i_{\rm p} \frac{N_{\rm p}}{N_{\rm s}}$

• The reflected impedance for $L_{\rm mp}$ for the secondary is:

•
$$\frac{v_s}{I_s} = Z' = v_p \frac{N_s}{N_p} \times \frac{1}{i_p} \frac{N_s}{N_p} = \left(\frac{N_s}{N_p}\right)^2 L_{mp}$$

- For the case of $L_{\ell s}$ in the secondary,
- $\frac{v_s}{I_s} = Z = j\omega L_{\ell s}$
- $v_{\rm p} = v_{\rm s} \frac{N_{\rm p}}{N_{\rm s}}$ and $i_{\rm p} = i_{\rm s} \frac{N_{\rm s}}{N_{\rm p}}$

•
$$\frac{v_p}{i_p} = Z = v_s \frac{N_p}{N_s} \times \frac{1}{i_s} \frac{N_p}{N_s} = \left(\frac{N_p}{N_s}\right)^2 L_{\ell s}$$

Magnetics – T-model

- To simplify the measurement of the transformer in real life, the leakage inductance in the secondary can be reflected on to the primary.
- The impedance transformation from secondary to primary is:

•
$$L'_{\ell s} = \left(\frac{N_p}{N_s}\right)^2 L_{\ell s} = \left(\frac{N_p}{N_s}\right)^2 (1 - k) L_s$$

• Given that
$$\sqrt{\frac{L_p}{L_s}} = \frac{N_p}{N_s}$$
, $L_s = L_p \left(\frac{N_s}{N_p}\right)^2$

•
$$L'_{\ell s} = \left(\frac{N_{\rm p}}{N_{\rm s}}\right)^2 (1 - k) L_{\rm s} = \left(\frac{N_{\rm p}}{N_{\rm s}}\right)^2 (1 - k) L_{\rm p} \left(\frac{N_{\rm s}}{N_{\rm p}}\right)^2$$

- $: L'_{\ell s} = (1-k)L_{p}$
- This is called the 'T-model' of a transformer.

Magnetics

Measuring the transformer

- This section looks at deriving the transformer equations without reflecting the secondary leakage into the primary.
- Open-circuiting and short-circuiting the transformer can be used to measure each component.
- If secondary is open-circuited $(i_s = 0)$:

•
$$\begin{bmatrix} v_{\rm p} \\ v_{\rm s} \end{bmatrix} = j\omega \begin{bmatrix} L_{\ell \rm p} + L_{\rm mp} & \frac{N_{\rm s}}{N_{\rm p}} L_{\rm mp} \\ \frac{N_{\rm s}}{N_{\rm p}} L_{\rm mp} & L_{\ell \rm s} + L_{\rm ms} \end{bmatrix} \begin{bmatrix} i_{\rm p} \\ 0 \end{bmatrix}$$

•
$$v_{\rm p} = j\omega L_{\ell \rm p} i_{\rm p} + j\omega L_{\rm mp} i_{\rm p} + j\omega \frac{N_{\rm s}}{N_{\rm p}} L_{\rm mp} \times 0$$

•
$$v_p = j\omega L_{\ell p}i_p + j\omega L_{mp}i_p$$

•
$$L_{\rm p} = L_{\ell \rm p} + L_{\rm mp}$$

• If secondary is open-circuited $(i_p = 0)$:

•
$$\begin{bmatrix} v_{\rm p} \\ v_{\rm s} \end{bmatrix} = j\omega \begin{bmatrix} L_{\ell \rm p} + L_{\rm mp} & \frac{N_{\rm s}}{N_p} L_{\rm mp} \\ \frac{N_{\rm s}}{N_p} L_{\rm mp} & L_{\ell \rm s} + L_{\rm ms} \end{bmatrix} \begin{bmatrix} 0 \\ i_{\rm s} \end{bmatrix}$$

•
$$v_{\rm s} = j\omega \frac{N_{\rm p}}{N_{\rm s}} L_{\rm mp} \times 0 + j\omega L_{\ell \rm s} i_{\rm s} + j\omega \frac{N_{\rm s}}{N_{\rm p}} L_{\rm ms} i_{\rm s}$$

•
$$v_s = j\omega L_{\ell s}i_s + j\omega \frac{N_s}{N_p}L_{ms}i_s$$

•
$$L_{\rm s} = L_{\ell \rm s} + \frac{N_{\rm s}}{N_{\rm p}} L_{\rm ms}$$

• If secondary is short-circuited ($v_s = 0$):

•
$$\begin{bmatrix} v_{\rm p} \\ 0 \end{bmatrix} = j\omega \begin{bmatrix} L_{\ell \rm p} + L_{\rm mp} & \frac{N_{\rm s}}{N_p} L_{\rm mp} \\ \frac{N_{\rm s}}{N_p} L_{\rm mp} & L_{\ell \rm s} + L_{\rm ms} \end{bmatrix} \begin{bmatrix} i_{\rm p} \\ i_{\rm s} \end{bmatrix}$$

•
$$v_{\rm p} = j\omega L_{\rm sc}i_{\rm p} = j\omega L_{\ell \rm p}i_{\rm p} + j\omega L_{\rm mp}i_{\rm p} + j\omega \frac{N_{\rm s}}{N_{\rm p}}L_{\rm mp}i_{\rm s}$$

•
$$0 = j\omega \frac{N_s}{N_p} L_{mp} i_p + j\omega L_{\ell s} i_s + j\omega L_{ms} i_s$$

• Rearranging the equation for i_s :

•
$$-j\omega \frac{N_s}{N_p} L_{\rm mp} i_{\rm p} = j\omega L_{\ell s} i_{\rm s} + j\omega L_{\rm ms} i_{\rm s}$$

•
$$i_{\rm S} = -\frac{j\omega \frac{N_{\rm S}}{N_p}L_{\rm mp}}{j\omega L_{\ell \rm S}i_{\rm S} + j\omega L_{\rm ms}}i_{\rm p}$$

• Substituting i_s into equation for v_p :

•
$$v_{\rm p} = j\omega (L_{\ell \rm p} + L_{\rm mp})i_{\rm p} - \frac{\left(j\omega \frac{N_{\rm S}}{N_{p}}L_{\rm mp}\right)^{2}}{j\omega L_{\ell \rm S}i_{\rm S} + j\omega L_{\rm ms}}i_{\rm p}$$

• Given that
$$L_p = L_{\ell p} + L_{mp}$$
, $L_s = L_{\ell s} + L_{ms}$ and $M = \frac{N_s}{N_p} L_{mp}$:

•
$$v_{\rm p} = j\omega (L_{\ell \rm p} + L_{\rm mp})i_{\rm p} - \frac{\left(j\omega \frac{N_{\rm S}}{N_{p}}L_{\rm mp}\right)^{2}}{j\omega L_{\ell \rm S}i_{\rm S} + j\omega L_{\rm ms}}i_{\rm p}$$

•
$$v_{\rm p} = j\omega L_{\rm p}i_{\rm p} - \frac{j\omega M^2}{j\omega L_{\rm s}}i_{\rm p}$$

• Since
$$v_p = j\omega L_{sc}i_p$$
,

•
$$j\omega L_{\rm sc}i_{\rm p} = j\omega L_{\rm p}i_{\rm p} - \frac{j\omega M^2}{j\omega L_{\rm s}}i_{\rm p}$$

•
$$L_{\rm sc} = L_{\rm p} - \frac{M^2}{L_{\rm s}}$$

• Rearranging:

•
$$M^2 = (L_{\rm sc} - L_{\rm p})L_{\rm s}$$

•
$$\therefore M = \sqrt{(L_{\rm sc} - L_{\rm p})L_{\rm s}}$$

• Since
$$M = k\sqrt{L_pL_s}$$
:

•
$$k = \frac{M}{\sqrt{L_{\rm p}L_{\rm s}}}$$

- An LCR metre is often used to measure inductances.
- The following can be measured:

•
$$L_{\rm p} = L_{\ell \rm p} + L_{\rm mp}$$

•
$$L_{\rm s} = L_{\ell \rm s} + L_{\rm ms}$$

•
$$L_{\rm sc} = L_{\rm p} - \frac{M^2}{L_{\rm s}}$$

• Given L_p , L_s and L_{sc} :

•
$$M = \sqrt{(L_{\rm sc} - L_{\rm p})L_{\rm s}}$$

• $k = \frac{M}{\sqrt{L_{\rm p}L_{\rm s}}}$

•
$$k = \frac{M}{\sqrt{L_{\rm p}L_{\rm s}}}$$

Magnetics – measurement

- Using an LCR metre, the inductance of the transformer can be measured.
- If the secondary is open-circuited, primary terminals measure the self-inductance of the primary winding:
- $L_{oc} = (1 k)L_{p} + kL_{p} = L_{p}$
- Using the turns ratio, the self-inductance of the secondary winding can be determined:

•
$$L_{\rm s} = \left(\frac{N_{\rm p}}{N_{\rm s}}\right)^2 L_{\rm p}$$

• If the secondary is short-circuited, secondary terminals measures:

•
$$L_{\text{sc}} = (1-k)L_{\text{p}} + \frac{(1-k)L_{\text{p}}kL_{\text{p}}}{(1-k)L_{\text{p}}+kL_{\text{p}}} = (1-k)L_{\text{p}} + \frac{(1-k)L_{\text{p}}kL_{\text{p}}}{L_{\text{p}}}$$

• =
$$(1 - k)L_p + (1 - k)kL_p = L_p - kL_p + kL_p - k^2L_p$$

- $= L_{\rm p} k^2 L_{\rm p}$
- Then the coupling factor of the transformer can be found by:

• From here, $M = k\sqrt{L_pL_s}$

Terminals to winding 1